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Abstract

Quality characteristics on the properties of process capability indices (PCls) are
often required to be normally distributed. But, if a characteristic is not normally
distributed, serious errors can result from normal-based techniques. In this case,
we may well consider the use of new PCls specially designed to be robust for
non—normality.

In this paper, a newly proposed measure of process capability is introduced and

compared with existing PCIs using the simulated non-normal data.

1. Review of PCI

Several authors have promoted the use of various process capability indices
and examined their statistical properties. In this section, some theoretically
well-established PCIs will be reviewed with brief remarks on their properties.
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They are all given as a form of ratio relating a measure of allowable process
spread to a measure of actual process spread. The resultant ratio is unitless,
thereby allowing comparisons to be drawn across a broad spectrum of processes.

We now proceed to define and examine the earliest form of PCI , generally

denoted by C, .

_USL — LSL
6o

where USL and LSL denote the upper and lower specification limits, respectively,

C,=

and o the process standard deviation. Clearly, large values of (, are desirable
and the value C, =1 indicates that it is possible to have the expected

proportion of NC ("Nonconforming”, values of characteristic X outside specification
limits) product as small as 0.27%. Montgomery (1985) cites recommended

minimum values for C, , as followes :

- for an existing process, 1.33

- for a new process, 1.50

But, C, fails to take into consideration proximity to the target value in its
assessment of a process capability as is easily seen in the form of C, . Due to

the inherent inability of C, to consider targets, several indices have been

proposed that attempt to take the target value T into account. This class of

indices includes

o 30

pu 30

Cpk = min(CN R Cpu)
Cpk* = (l—k) Cﬁ
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with notations in Kane(1986) where k = %SLL_T—:IIj_SIZ and process mean p

satisfies the condition LSL < p < USL . Cy and C,," are often treated

interchangeably; they are numerically equivalent when ( < £<1, and the target

value is the midpoint of the specification limits.

Also belonging to this class of indices is C,, , which is defined as ( in the

published literature by Chan et al (1988a) )

Com = g
m W (=T
where d= LSLZ_—L—QIL denotes the half length of the specification limits.
The motivation for C, , Cpu , and C,, arises directly from the inability
of C, to consider the target value. However, C, and C, are

substantially different in their determination from either C, or C,, , while C,,
represents a minor alteration of C, , essentially examining squared deviations

from the target rather than from the prdcess mean. C, and C,, are unilateral

measures of process capability as they consider only a single specification limit.

Cy is obtained from C, by modifying the numerator and C,, is obtained

from C, by modifying the denominator. If the two modifications are combined, we

obtain the index

d— | p—m]| -
P+ (u—D?°

C_bmk =

introduced by Pearm et al.(1992).
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All process capability indices of this form are determined under the
assumptions that
(a) the process is in control

(b) the process measurements are normally distributed.

2. Proposal of a New Measure for Process Capability

All indices proposed in the previous section are studied and developed under
the assumption of normality. Although some practitioners have been well aware of
possible problems that can be caused by deviation from the normality of a quality
characteristic, X, the effects of non-normality on properties of PCIs have not been

a major research item until quite recently.

The discussion of non-normality so far falls into two parts. The first is
investigation of the properties of PCIs and their estimators when the distribution
of X has specific non-normal forms. The second is development of methods
allowing non-normality and consideration of new PCIs ‘specially designed to be
robust to non-normality. Some robust PCIs to reduce the effects of non-normality
are described and discussed in Kotz and Johnson (1993). ‘

Usual approach is either to make a direct allowance for the values of the
skewness and kurtosis coefficients or to get limits which are insensitive to these
values. Another approach, aimed at enhancing connection between PCI values and
expected proportions of NC, tries to correct the PCI, so that the corrected value
corresponds (at least approximately) to what would be the value for a normal

process distribution with the same expected proportion NC.

The newly proposed PCI, which will be denoted as C,, (subscript n refers to

non-normal), also accommodates this idea. And the two different lengths p— LSL
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and USL — p for non-normally distributed data especially for skewed distribution
must be taken into account so that they can influence the magnitude of the index
altogether.

The new measure C,, to evaluate process capability is as follows. For a

given non-normally distributed distribution f(x) with cumulative density
funtion{cdf) F(x),

let g;=1-F(LSL), ¢,=F(USL)
Zi=6-0"Yq), Z,=6-0"g)

where @ is the inverse cdf of standardized normal distribution.

Then

p— LSL USL—
CM,Z W) Z['O' +w2 Zu'O'

where w,’s are weights with w; + wy; = 1.

This measure based on the perception that C, for normal case can be divided

into two parts and weighted so that it is written as 1. 4 + L. i, where

2 3o 2 30

'd’ in the numerator , ‘3’ in the denominator and weight 1 are to be properly

2
. modified for non-normally distributed data to meet the same expected NC
proportion idea and to take the two different lengths of the specification into

consideration. Therefore, C,, becomes C, exactly when the quality characteristic

is under normal distribution and the process mean is centered at the target value.
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p— LSL

Among the possible choices of w; and w, W\ T TOSL— LSL %2 T
USL — p .
USL — LSL &re chosen because we hope that the longer is the length of the

specification limit, the more it needs to be reflected in the index. Z, and Z, are

'de'signed to describe the fact that the larger is the expected NC proportion , the

smaller the index needs to be.

In the following section, some cases are simulated and compared with
efficiency ratios using the MSEs (mean square errors) of the indices from the

generated non—normally distributed sample data.

3. Simulation and Comparison

Simulations were carried out to compare the behaviors of the proposed index

with those of the other indices already reviewed in section 1 using gamma, beta

and t distributions. A random variable X has the gamma distribution I'(e, B) if
_—F(clzTﬁ”xa_le_g , 220, a>0, >0 with respect to Lebesque

measure on (0, @) which will be used in this section as a representative for

its density is
one side bounded density function.
Beta and t distributions with densities B, g(x) = —le%(%xa_l(l —x) !

2
for 0<xK1 , Hx)= 7-3—}%(1 + x? )2 will be used as a representative

for bounded and unbounded density function, respectively. Detailed account and

figures are available in Bickel and Doksum (1976).
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The criterion is the robustness of the index for non—normality. To verify the
better performances of C,, over the other indices, we define the ratios of MSEs
as follows.

MSE (C)
MSE (C,)

MSE (C,)
MSE (C,y)

MSE (C,»)
MSE ( C,)

MSE (Copi)
MSE ( C,y)

where ER,, ER, ER; and ER, refer to the efficiency ratio of C,, over C, ,

ER1 =

ERZ =

ER3 =

ER4 =

Cp , Cpn and Cpm, respectively. For the calculation of the indices, only
non-normally distributed sample date are used through the Shapiro and Wilk's
W-test for normality with significant probability less than 0.1. Shapiro and
Wilk’s(1965) W statistics has been shown to provide a superior omnibus test of
normality (Pearson et al., 1977).

Tables 3.1-9 are the summarization of the simulation results. Each table
contains the MSEs of empirically calculated PCIs and ERs. 500 times iteration was
done for each sample size n=10, 20, 50, 100 and effective iteration numbers are
also noted right beside each sample size obtained by excluding the normally
distributed data through the Shapiro and Wilk's W-test for normality.

Tables 3.1-3 show the behaviours of C,, over C; Cy, Cpy and C,y in case
of bilateral specification limits available. Even though there does not seem to

exist any monotonic relation between sample size n and ER , C,, behaves

uniformly good over the other indices (i.e all ERs are larger than 1) regardless of
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sample size n. And there is extraordinary good performance of C,, over C,, as

is easily seen in the tables. So we may say that it is desirable to adopt C,, as a

robust PCI for non—normally distributed data in case of bilateral specification

limits are available.

Meanwhile in case of unilateral specification limit available, the performances of
Cpn depend on the distributions frorﬁ which the sample data are generated and
which side of specification limit is used. For the three distributions (USL only) in
Tables 3.4-6, C,, shows satisfactory result over the other indices except C,, for
n=10 (gamma).

And for LSL only cases in Tables 3.7-8, C,, seem to be acceptable for t and
gamma distribution even though we have FER3=0.95 for n=10 (gamma). But, for

beta distribution in Table 3.9(LSL only), C,, behaves quite differently. Unlike its

better performance for the USL only case, C,, does not seem to show much
stabler behavior than the other indices for the LSL only case. It is much worse
than C,. even for large sample size n=100. So the use of C,, for the LSL

only case is not recommendable for beta distribution.

In addition, when the quality characteristic is under t distribution, that is,

kurtosis may exist, ERs are always around 1.3 in Tables 3.1, 34, 3.7. In other
words, C,, behaves overwhelmingly well when the distribution may have high

probability in tail areas.
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Table 3.1 Simulation results of MSE (ER) for t(3)

( =20 specification limits )

n
10(132) 20(220) 50(300) 100(381)
C, 0.354 (1.34) 0.231 (1.34) 0.160 (1.32) 0.131 (1.32)
Cp 0.361 (1.37) 0.232 (1.34) 0.160 (1.32) 0.130 (1.31)
Com 0.344 (1.30) 0.225 (1.30) 0.158 (1.31) 0.130 (1.31)
Cpme 0.354 (1.34) 0.238 (1.38) 0.166 (1.37) 0.131 (1.32)
Con 0.264 0.173 0.121 0.099
Table 3.2 Simulation results of MSE (ER) for 1Y9,0.1)
( =20 specification limits )
n (effective iteration number)
10_(65) 20(109) 50(238) 100(361)
C, 0.267 (1.27) 0.114 (1.30) 0.072 (1.31) 0.050 (1.28)
Cu 0.179 (1.10) 0.116 (1.32) 0.075 (1.36) 0.051 (1.31)
Com 0.163 (1.00) 0.108 (1.23) 0.071 (1.29) 0.049 (1.26)
Cpme 0.228 (1.40) 0.152 (1.73) 0.101 (1.84) 0.068 (1.74)
Con 0.163 0.088 0.055 | 0.039
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Table 3.3 Simulation results of MSE (ER) for B(7,4)

( £20 specification limits )

n (effective iteration number)

10(53) 20(73) 50(124) 100(222)
C, 0.179 (1.20) 0.099 (1.24) 0.065 (1.27) 0.045 (1.32)
Ch 0.159 (1.07) 0.100 (1.27) 0.064 (1.25) 0.047 (1.38)
Com 0.150 (1.01) 0.091 (1.15) 0.062 (1.22) 0.044 (1.29) |
Come 0.177 (1.19) 0.117 (1.46) 0.075 (1.47) 0.048 (1.41)
Con 0.148 0.079 0.051 0.034
Table 3.4 Simulation results of MSE (ER) for t(3)
( wy =0, wy=1, *30 specification limits )
n (effective iteration number)
10(220) 20(300) 50(132) 100(381)
C, 0.365 (1.32) 0.246 (1.32) 0.168 (1.31) 0.131 (1.31)
Cp 0.373 (1.35) 0.247 (1.33) 0.168 (1.3D) 0.131 (1.3D)
- Com 0.354 (1.28) 0.238 (1.28) 0.166 (1.30) -~ 0.131 (1.31)
Cpmr 0.387 (1.40) 0.270 (1.45) 0.185 (1.45) 0.138 (1.38)
Con 0.277 - 0.186 0.128 0.100
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Table 3.5 Simulation results of MSE (ER) for 1Y9,0.1)

(w1=0,WZ=1

’

+30 specification limits )

n (effective iteration number)

10(65) 20(109) 50(238) 100(361)
C, 0.390 (1.18) 0.215 (1.18) 0.138 (1.18) 0.094 (1.19)
Ch 0.357 (1.08) 0.213 (1.17) 0.137 (1.17) O.Q92 (1.18)
Com 0.305 (0.92) 0.202 (1.11) 0.134 (1.15) 0.091 (1.15)
Cpmr 0.382 (1.16) 0.257 (1.41) 0.170 (1.45) 0.115 (1.46)
Con 0.330 0.182 0.117 0.079
Table 3.6 Simulation results of MSE (ER) for B(3,7)
(w =0, w = , *30 specification limits )
o
n (effective iteration number)
10(82) 20(103) 50(233) 100(395)
C, 0.323 (1.09) 0.177 (1.09) 0.118 (1.08) 0.085 (1.09)
Ch 0.316 (1.07) 0.165 (1.01) 0.111 (1.02) 0.082 (1.05)
Com 0.299 (1.01) 0.165 (1.01) 0.112 (1.03) 0.082 (1.05)
Cpmi 0.352 (1.19) 0.200 (1.23) 0.143 (1.31) 0.107 (1.37)
Chn 0.296 0.163 0.109 0.078
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Table 3.7 Simulation results of MSE (ER) for t(3)

(

wy, =

1,W2=O

, £30 specification limits )

n (effective iteration number)

10(220) 20(300) 50(132) 100(381)
C, 0371 (1.32)  0.240 (1.32) 0.165 (1.32) 0.137 (1.32)
Cu 0378 (1.35)  0.242 (1.33) 0.165 (1.32) 0.137 (1.32)
Com 0358 (1.27)  0.234 (1.29) 0.163 (1.30) 0.136 (1.31)
C ot 0346 (1.23) 0225 (1.24) 0.158 (1.26) 0.130 (1.25)
Com 0.281 0.182 0.125 0.104
Table 3.8 Simulation results of MSE (ER) for I19,0.1)
(wy=1, wy=0 , =30 specification limits )
o
n (effective iteration number)
10(65) 20(109) 50(238) 100(361)
C, 0.171 (1.11) 0.110 (1.18) 0.064 (1.10) 0.049 (1.11)
o 0.154 (1.00) 0.115 (1.17) 0.071 (1.22) 0.053 (1.20)
Com 0.146 (0.95) 0.106 (1.11) ~ 0.064 (1.10) 0.049 (1.11)
Com 0.163 (1.06) 0.108 (1.41) 0.071 (1.22) 0.049 (1.11)
Com 0.154 0100 0.058 0.044
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Table 3.9 Simulation results of MSE (ER) for B(7,3)

(w1=1,w2=0

’

* 30 specification limits )

n (effective iteration number)

10(57) 20(111) 50(238) 100(405)
C; 0.679 (1.09) 0.190 (1.09) 0.122 (1.09) 0.084 (1.09)
Cu 0.588 (0.92) 0.168 (0.96) 0.110 (0.98) 0.082 (1.07)
Com 0.290 (0.45) 0.164 (0.94) 0.113 (1.01) 0.082 (1.07)
Comi 0.241 (0.38) 0.141 (0.81) 0.093 (0.82) 0.065 (0.84)
Com 0.640 0.175 0.112 0.077
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4. Concluding Remarks

Most SPC techniques require that the variable quality characteristics be at
least approximately normally distributed. Some well-known PCIs, however, are

sensitive to departure from normality so that the use of those indices are not
recommended. In this paper, C,, ,a newly proposed measure of process capability,
is introduced by taking both sides g — LSL and USL— u into consideration and
with some properly chosen Z,, Z, and Weights.

Through the simulation study for Gamma, Beta and t distribution , C,, gives

" us a quite good performance when bilateral specification limits are available

regardless of the sample size n from 10 to 100. Meanwhile in case of unilateral
specification limit is available, the performances of C,, depend on the distributions

from which the sample data are generated and which side of specification limit is

used. When quality characteristic is under beta distribution and only lower

specification limit is available, the use of C,, does not seem to be appropriate. In
other cases, however, the performances of C,, are mostly satisfactory.
To improve the performances of C,, , some further research works are

necessary in choosing proper Z, , Z, and weights.
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