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ABSTRACT

The matching pursuit (MP) algorithm
developed by S. Mallat and Z. Zhang is applied
to magnetic resonance (MR) imaging. Since
matching pursuit is a greedy algorithm to find
waveforms which are the best match for an
object-signal, the signal can be decomposed with
a few iterations. In this paper, we propose an
application of the MP algorithm to the MR
imaging to reduce imaging time. Inner products
of residual signals and selected waveforms in the
MP algorithm are derived from the MR signals
by excitation of RF pulses which are Fourier
transforms of selected waveforms. Results from
computer simulations demonstrate that the
imaging time is reduced by using the MP

algorithm and further a progressive
reconstruction can be achieved.
Keywords: matching pursuit in magnetic

resonance imaging, adaptive coding, rapid
imaging, non-Fourier imaging.

1. Introduction

Since  Fourler zeugmatography had  been
introduced™, most of magnetic resonance (MR)
imaging techniques have been based on Fourier
transform’. In Fourier Transform MR imaging,
signals are sampled and acquired in k-space or
Fourier domain of the image. The image is
reconstructed by inverse Fourier transform of the
signals. The spatial resclution of the image is
achieved by acquiring sampled signals with a
frequency bandwidth which occupies N XN array
in the k-space®™, Therefore, the conventional
Fourier transform-MR imaging has a
shortcoming that it takes a long time to obtain

an image with a high spatial resolution.

To reduce imaging time, rapid imaging
techniques have been proposed in the last
decade, e.g., Echo Planar Imaging (EPI), Steady
State Free Precession (SSFP), Rapid Acquisition
Relaxation Enhanced (RARE) and DANTE fast
imaging®”. These techniques have achieved the
reduction of imaging time by using fast data
acquisition of the k-space and therefore they
usually require high performance of MR
hardware such as strong gradients or RF
systems. On the other hand, other methods
using non-Fourier methods have been proposed
to tackle the problem. They are feature
recognizing MRI, local featured MRI, singular
value decomposition and Karhunan~Loeve (K-L)
expansiong'g. In these methods, Fourier bases
conventionally employed in MRI are replaced by
other bases which are generally founded in the
sense that few bases capture most of the
information of the image.

Recently, S. Mallat and Z. Zhang have introduced
the matching pursuit (MP) as a new signal
decomposition method™. Matching pursuit is a
recursive  algorithm to compute a signal
representation with respect to dictionaries of
elementary building blocks™. Since waveforms in
the dictionaries are chosen in order to match a
signal, the signal can be decomposed into fewer
numbers of waveforms compared with Fourier
decomposition'®. In this paper, we apply a
matching  pursuit  algorithm to  magnetic
resonance imaging and propose an MP-MR
imaging method to reduce imaging time.
Detailed algorithms for MR imaging are
described and they are verified by computer
simulations.
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2. Theory
2. 1. Image Reconstruction in MR Imaging

In MR imaging, an object to be imaged is
located inside a magnetic field which consists of

a static magnetic field ( By and a spatially

gradient magnetic field ( G,, G,, Gz). The

precession frequencies of spins in the object vary
spatially due to spatially varying magnetic field
as

fi=F(By+ G5+ 7, (1)

where 7 is the gyromagnetic ratio and .; is the
spatial vector of (x, y, z). The spatially varying
precession frequency leads to a periodic phase
modulation in the spins of the object. After
2-dimensional selection by RF pulse, the MR
signal by integrating the spins over the object
can be acquired as

+® 4o . .
Sp(m.n)=f_m f_m o(x, e " * e TV dxdy, (2)

where is 2-dimensional spin distribution,
k.=7vG,Tm, ky= yG,8tn, T is time duration

of x-gradient magnetic field, and J! is the ADC
sampling time. The object function of spin
distribution, (%, %) can be reconstructed by
inverse Fourier transform of Eq. (2). The

sampled data, Sp(m.7n) in k-space are usually

acquired column by column where each column
is separated by the repetition time (TR). To get
a 2Z-dimensional array of NXN in k-space,
therefore, it takes N times of TR.

Another way to encode the MR signal can be
carried out using a non-Fourier technique which
has been introduced recently, eg., wavelet
transform MR imaging. In this case, a
waveform is generated by an RF pulse and is
superimposed onto the object function. Then the
MR signal will be

teo T —i ”;
SNF(m.n)=f_°0 fﬁw o(x, Wun(x) e T dxdy

+® .
=f_w <o(x,), unl2) >xe gy (3)

where, um(x) is the waveform generated by RF
pulse and <> is the inner product operator. If
the waveform set of {u,(x)} is orthonomal set,

e.g, wavelet bases, the object function, can be
reconstructed completelylo. In the non-Fourier
encoding method, by optimally choosing
{u,,(x)}, one can reduce the number of

encodings even while maintaining a visually
sufficient reconstruction of the object. In this
paper, to find the optimal basis set for this
purpose, we employ the matching pursuit
technique which will be described in the
following section.

2. 2. Matching Pursuit (MP)

In matching pursuit, a signal f is decomposed
into the concatenated sum

f= ’2}1 <R™,b,>b, + R*
=0 o)
= fu+ R*f,

where Rkj is the residual signal after k
iterations and b&,, is a waveform which matches

the signal. Note that b, belongs to a dictionary
I, ie, I'=1{b,}. In Eq. (4), the signal can be
approximated as f; after k iterations. With the

initial values of R'f=7 and f, =0, the inner

products of the residual signals and waveforms
from the dictionary are computed, ie,

{RY, b,>, and a waveform is chosen so that

it closely matches the residual signal Rkj, Le.,

l< ka,b“ >i > ai?r)}< ka,by >| ’ )

where (< @<1. Then the signal fp+; can be
spproximated as

k
The residual signal is updated as

k k
R¥ f=R¥f—<R [, >b, o

After incrementing k, Egs. (5), (6)and (7) are
repeated until some convergence criterion has
been satisfled. As seen in Eq. (5), the algorithm
greedily chooses a waveform at each iteration so
that the selected waveforms are best adapted to
approximate parts of the signal. Therefore the
signal can be decomposed and reconstructed with
a few numbers of iterations™.
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2. 3. Matching Pursuit in MR Imaging

MP provides flexible signal decomposition since
the choice of dictionaries is not limited. "The
time~frequency dictionary provides adaptive
decomposition where signal structures are
represented by waveforms in the dictionary.
Therefore signals are explicitly featured by the
scale, frequency and time of selected waveforms.
In this paper, a wavelet dictionary is chosen to
take advantage of time-frequency information.
Since waveforms in this wavelet dictionary are
localized spatially, one can achieve an adaptive
coding which depends on the object. In the
following sections, we will discuss the
implementation of matching pursuit algorithm to
MR imaging and propose a pulse sequence for
the MP-MR technique.

The wavelet dictionary consists of orthonomal
wavelet bases. For the image with NXN matrix,
N orthonomal wavelet basis functions are in the
dictionary. Using this wavelet dictionary, the
non-Fourier encoding MR method mentioned in
Eq. (3) is employed. The MP algorithm is
adopted to find optimal wavelet bases among N
orthonomal bases in the dictionary, ie., using the
MP algorithm some wavelet bases are selected
so that they are best matched with the image
and thereby guaranteeing visually sufficient
reconstruction of the object. The reduced optimal
wavelet bases, therefore, would lead to the
reduction of imaging time.

As seen in Eq. (3), since non-Fourier encoding
is applied for 1-dimension in the x-direction, we
need a 1-dimentional signal which s
representative of the N horizontal lines in the
image. The 1-dimensional signal in this paper is
chosen by projecting the 2Z-dimensional image,
e.g., by integrating the signal along the reading
direction (y-direction). Further, in the MP
algorithm, the 1-dimentional projection signal is
used to find a reduced set of I1-dimentional
wavelet bases which leads the reduction of
imaging time. In MR imaging, the projection
signal is obtained by acquiring the MR signal
with no y-directional gradient, ie.,

#D= F 7 Sim01= [ olx)dv. ®

Using this 1-dimensional projection signal of the
image, the MP algorithm is applied with the
wavelet dictionary. Since the dictionary chosen in
this paper consists of othonomal wavelets,
subtracting the projection of one basis from the
current residual has no effect on the projections
of other bases. Therefore, a wavelet basis
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ischosen in the dictionary so that it best matches
the signal of as

sup

= >
e (@ (o (Oo<nchy ~ | HD D) >

)

where ®,,(%) is the chosen wavelet basis at

f<p(x),w,(0)>]=

k-th iteration and it belongs to the wavelet

dictionary, £2. Note that Eq. (9) is taken from
Eq. (5) with the dictionary of orthogonal bases
in the MP algorithm. Finding wavelet bases in
the dictionary is repeated from k=0 to N-1 so
that N wavelet bases in the dictionary are
sequenced according to the criterion of Eq. (9).
Since the dictionary chosen in this paper consists
of othonomal wavelets,

The image signal can be reconstructed
sufficiently using some of the wavelet bases
among ordered wavelet bases in the dictionary
using MP. As an example, figure 1 shows a
comparison between a 1-dimensional
reconstruction by the MP algorithm with the
Harr wavelet dictionary and those by Fourier
transform and conventional wavelet transform.
As shown in figure 1 (a), the signal
reconstructed by MP algorithm with 64 iterations
is almost same as the original signal (128 data
points) shown in figure 1 (d) while the signals
reconstructed by Fourier transform and wavelet
transform with the same number of iterations
have poor spatial resolution as shown in figure 1
(b) and (c). Therefore a signal can be restored
with a few iterations using the MP algorithm.

2. 4. Encoding in MR-MP technique

To apply the ordered wavelet bases to the
object, 90 degree~RF pulses are excited with a
x-directional gradient as shown in Fig. 2. The
RF pulses are generated so that their response
to the object is the projection of wavelet bases
onto the object. Generally RF pulses are
designed by inverse Fourier transform of wavelet
bases in case that a linear gradient applied. By
superimposing wavelet bases onto the object, the
MR signal integrated over the object can be
written as

Smmy= " [ sz, e T dudy. (10)

Note that {a)y_(x)} is the set of wavelet bases

ordered using MP algorithm as mentioned in the
previous section and the MR signal is sampled
with the y-directional reading gradient as shown
in Fig. 2. Since wavelet bases are chosen
optimally so that they have best matched the

-232-



Matching Pursuit®}#&- o}23 MRejA o] 38 T

object function, a reduced set of some MR
signals encoded by optimal wavelet bases in the
dictionary are sufficient to reconstruct p(x, V).
The following describe the reconstruction
procedure in the MR-MP algorithm

200

100
S0 |

21
41
61
81 |
101
12!

(a)

200
150 F

100

50 |

(b)

200
150
100

50

()

21
41
61
81 |
101
121

200

150 [
100
50 F

x = o

(d)

81
101
121

Figure 1. 1-dimensional signals reconstructed by
(a) MP algorithm with 64 iterations, (b) Fourier
transform with 64 encodings and (c) conventional
wavelet transform with 64 encodings. The Harr
wavelet dictionary is used. As is seen, (a) is
more similar to the original while the signals
reconstructed by Fourier transform and wavelet
transform have poor spatial resolution. For
reference, (d) shows the original signal.

2. 5. Reconstruction: Progressive reconstruction

After acquiring the MR signal at each encoding
step, which can be represented as Eq. (10), a
1-dimensional Fourier transform in the reading
direction (y-direction) is performed. Then one
can obtain an inner product with respect to x,
Le.,

+i

cJop(x,y) wym(x)dx

-1
Fy [S(m,n)] =I

= < p(%,3), 0y (x)>x (1D

where F;![-] is the one dimensional inverse

Fourier transform in the y-direction. The
reconstruction is performed as

r1(x, )= oi(x, ¥+ <p(x, ), 0,,(x) > 0, (x) (12)

where p,4+,(x, ¥) is newly updated image with

Pr+1(x, ) =0. As indicated in Eq (12),

computational requirement at each encoding step
is as simple as a multiplication and an addition.

Since a basis function at each iteration is
selected so that it matches best with the residual
signal the resolution of the reconstructed signal
or image is progressively improved with each
iteration. Therefore one can achieve a
progressive reconstruction at each encoding
step, e, a low resolution image can be obtained
with a few iterations and the resolution of the
image can be improved with additional encoding
steps. Further, one can stop the iterations if the
image quality is satisfactory, which leads to a
possibly reduced imaging time.

Figure 2 shows a pulse sequence for the
matching pursuit algorithm applied to MR
imaging. As is seen, the one dimensional
projection signal is obtained using a navigator
echo which is acquired just after the 90
degree-RF pulse. A reading gradient was applied
in the x-direction to obtain the projection signal,
but it is not used for 2D imaging. As imentioned
previously, 90 degree-RF pulse shapes are
determined by bases in the wavelet dictionary,
which are arranged in order by the MP criterion
of Eq. (9) applied to the 1-dimensional
projection signal. Consequently an image is
reconstructed from poor resolution to fine
resolution with increasing encoding steps. In
the following section, we will demonstrate the
matching pursuit algorithm in MR imaging and
its usefulness for the reduction of imaging time
by computer simulations.

90 RF pulse for waveforms 180F pulse
in the dictionary
RF

Navigator-ech signal Echo signal imaged
= &

Readmg gradient for the projection data
X-gradient

— n ‘mm

z-gradient ‘ \

sampling for projection dats data acquisition

Data sampling
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Figure 2. A pulse sequence for matching pursuit
algorithm with wavelet dictionary applied to MR
imaging.

3. Simulations

To verify the usefulness of the MP algorithm in
MR imaging, specifically for reduction of
imaging time, computer simulations were
performed. A Shepp phantom which had a
128x128 matrix size was used. First, the
phantom image was projected along
they-direction and the 1D projection signal was
obtained. Based on the criterion in Eq. (11),
waveforms in Harr wavelet dictionary were
selected and sequenced. Then the phantom image
was decomposed according to the sequenced
waveforms. Finally image reconstruction was
performed with selected waveforms in the
dictionary. Figure 3 shows a graph which
represents the power of the residual image
versus the number of iterations. As is seen, to
reconstruct the image completely, the proposed
algorithm requires fewer iterations or coding
steps than Fourier and wavelet transform MR
imaging methods.

nuxrber of codrg

Figure. 3 The power of residual images vs. the
number of iterations in case of a phantom image.

As is seen, residual power is negligible after 95
iterations. Therefore the MP algorithm leads to
reduction of iterations or encodings thereby
reducing imaging time.

4. Conclusions

As a conclusion, the matching pursuit algorithm
is applied to MR imaging with a wavelet
dictionary. It is found that the proposed
technique leads to the reduction of imaging time.
Further a  progressive reconstruction or
hierarchical reconstruction algorithm is achieved
using the MP-MR technique. In this paper, the
matching pursuit algorithm is modified for MR
imaging. Computer simulations were performed
with  phantom and human images. Results
obtained by computer simulations verified that
the image could be reconstructed completely with
reduced iterations. Therefore, the proposed

algorithm is believed to be useful for reducing
imaging time. Also progressive reconstruction
can be achieved so that it provides the quick
recognition of the object during data acquisition.
Further, the MP-MR technique proposed in this
paper can be applied to motion compensation
thanks to its adaptive encoding.
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