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Modelling Wave Propagation on a Turning Channel

JL. Lee’ and D.S. Baik™

INTRODUCTION

The interest in numerically-generated, Boundary-Fitted Coordinate Systems (BFCS) arises
from the need for conforming the boundaries of the region in such way that boundary
conditions can be accurately represented. The parabolic approximation method in solving wave
phenomena is known to have a great merit as time-saving method. However, the method
shows a disagreement for the wide angle and behind the structures since the numerical
scheme used proceeds grid by grid along a main axis. When waves propagate through a
turning channel, this disagreement also happens due to the turning angle of wave propagation
and the zigzag boundaries on the Cartesian methods. The study of improvement for this
disagreement is accomplished by using the boundary-fitted grid system to complicated region.

Boundary-fitted coordinates have been used extensively in propagating wave fields. Liu
and Boissevain (1988) applied a non-conformal transformation to waves between two
breakwaters. Kirby (1988) examined Liu and Boissevain’s model by constructing the
parabolic approximation in the transformed space. Recently, Dalrymple and Kirby (1994)
developed the forward-propagation equations for Fourier-Galerkin and Chebyshev-tau models
in conformal domains, and compared the results to exact solutions of waves in a circular
channel. We develop wave models by mapping the wave equations of hyperbolic and parabolic
types through the .boundary-fitted coordinate transformation and compare the model results to
exact solutions of waves either propagating or reflecting in a circular channel.

WAVE EQUATION

In the past two decades, prediction of nearshore waves took a new dimension with the
introduction of the mild slope equation by Berkhoff (1972) which is capable of handling the
combined effects of refraction and diffraction. Since then significant progress has been made
in computational techniques as well as model capabilities, notably by Radder (1979), Copeland
(1985), Ebersole et al. (1986), Yoo and O’Connor (1986), Madsen and Larsen (1987), Panchang
(1988), and Dalrymple et al. (1989). However, no single model has been proven to be perfect
or has c%early outperformed the others at present. The mild-slope equation of Berkhoff (1972)
is expressed in terms of instaneous water surface velocity potential, ¢ as
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v - (CCgv )+ kCCgp=0 o)

Writing @®=¢V (CCg) allows Eq. (1) to be cast into the form of a Helmholtz equation.
Under the assumptions of slowly varying depth and small bottom slope, or high frequency
wave propagation the equation for @ may be approximated as, Radder (1979),

vi0+ K o=0 @

where k2= k*— v3(CCe)"%/(CCg)"*. Starting from Eq. (2), governing equations of parabolic
and hyperbolic types will be derived.

BOUNDARY-FITTED COORDINATE SYSTEM
The basic idea of a boundary-fitted coordinate system is to have some coordinate line
coincident with each boundary segment, analogous to the way in which lines of constant

radial coordinate coincide with circles in a cylindrical coordinate system.

Parabolic Approach
In general curvilinear coordinates generated with V 26=0 and V 27)=0, the
non-conservative form of Laplacian operator can be written as

v2w=—}2—[ (24 D)0 2(xe+ yeyy) Ot (it ¥D0p] 3)

where ) is the Jacobian of transformation given as

J=xey,— x,9¢ @
and subscripts indicate differentiation. Therefore, the Eq. (2) becomes

(224 92) Do —2(x, 2+ vey,) Doy + (224 32) D, + T2 20=0 (5)

Equation (5) allows all computation to be done on a fixed square grid since it has been
transformed so that the curvilinear coordinates replace the cartesian coordinates as the
independent variables.

“Cé

For the case of constant depth, substituting O=A(& ne into Eq. (5) yields

A Agt2ik As—kA)—28(tkA,+ Ag) + 7A,,+ TP HEA=0 6)
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where a=(x2+3D), B=(x,xe+yw,) and 7=(xi+3d.

If the waves propagate in the propagating direction & the second derivative of A with
respect to £ can be neglected as

2iak Ap—2 8tk Ayt Ag) + YA+ (P— )B2A=0 (8)

which is the governing equation in the conformal domain. The derivatives are approximated

in the finite difference form setting V& and v#z=1 as follows.
Ag=Aii—Aij
Ar;=_}(Ai.i+1_Ai.i—1+Ai+1.i+l'~Ai+1.i—1)
Aw=—%'(Ai+1.i—1_2Ai+l.i+ Aiiyj+1) 9
Ae;='%'(Ai+1.i+l_Ai.j+l_Ai+1.i—1+Ai.i—1)
Substituting into Eq. (8) yields
QA j-1+biA iAo =dy, 0

where,

a;= :_/3;&.‘_3_}__21]

by=2aik.~ 7+ ————(]2'2")'?5] an
6= —%&—B*’%]

d,;= [(“‘%kc' —-2Z+B)Ai.i—l+{zaikc+ 7—(—]2%%]‘4;,;*'(%@'—%—13)‘4.‘.”1]

Equation (10) can be described in a trigonal matrix form as

b ¢ Ay di—a
a bz 4] AZ d2

ag by ¢ As|—| d (12)

Gy bu)|Any duy= Cny
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Hyperbolic_Approach

The governing equation of hyperbolic type is derived from the mild slope Eq. (1) as a pair
of first order equations as follows.

Lg an =
C at+VQ 0

(13)
49 1 ccgvr=0

which is similar to those used for the solutions of the shallow water equations. Equation (13)
is transformed from the Catesian { %, ¥} space into an alternate { 2, v} as

_ccg.i?—-%,-(meu—Qa‘yv'*‘Qyuxv_Qﬂxu):O

0Q,

act? ——C—f‘g(mu—w.)=0 a9
9Q, C

T ——%g(mv—m)=0

The derivatives are approximated in the finite difference form as
d
'5?' = J (yu(Qxi.Hl - Qm’,;’) “yv(Qxi+l.i_ Qxx‘.i)

+xv(Qyi+1‘i_ Qyi,;‘) —xu(Qyi,H-l - Qyi.i)}

Q.
Bci = %:g‘(yu( Nij+1— 77;',;') - yu("]H—l.i— ﬂi,i)} (15

29, =£§£(xu(m+1.;-

3t 20— % (i jo1— ’7:‘.;)}

This set of finite difference equations in the confomal domain is solved by the explicit
scheme.

RESULTS

Both wave models developed here are compared for a circular channel of constant depth
lying between two radii #;=75 and 7,=200m and covering 180° arc. The exact solution of

wave field in a circular channel was described in Dalrymple et al. (1994) as

#(r. 0)= ﬁoa F(ne”? (16)

where F,=[Y, (kr\)], (k) =], (kr)Y, (k)] with 7, determined by satisfying
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Y, (kr ), (kry) =T, (er )Y, (kry)=0, n=1,2,....N

to enforce a no-flux boundary condition on r=r; and r=7r, The a, values are given in

the following integral form :

f:zqi( r,0)r "'F ,dr

ay, 1

" 1p2
fr y Fhar

1

where the upwave boundary condition ¢(#,0) is given as 1.

The parabolic and hyperbolic model results are shown in Figs. 1a and 1b and compared
with the analytic solution shown in Fig. lc. The numerical results show excellent similarity
of the analytic solution. The reflection from the outer wall is observed prominently at about
40° and 120" . For this cases, the wavenumber # is 0.301 7%, the dimensionless channel
width is Aw = 37625 where w is the channel width. For this numerical solution, the
numbers of computational grids to the x and y-directions used are nx=200, ny=25,
respectively. If waves are blocked by a cross wall at 90° , the waves reflected off the wall
propagate backward. Therefore, the parabolic method requires the backward calculation
differently from the wave model of hyperbolic type, then the resulting wave field is obtained
by the superposition of the incident wave and the wave reflected off the cross wall. Figure 2
shows a comparison of the numerical results from parabolic and hyperbolic models with the
analytic solutions. The analytic solution of resulting wave field can be given as

#(r, 6)= ﬁoanlf‘,,(r)e"’g+ goa F o (ne™ P Oses% (18)

CONCLUTIONS

The wave models of hyperbolic and parabolic types has been developed through a
conformal transformation. Both were compared with the analytic solutions of waves

propagating through a circular channel of constant depth lying between two radii 7, =75 and
73 =200m and covering 180° arc. Comparison indicates that both methods provide accurate

results. The computation was also performed for a downwave reflecting condition. The
parabolic model can also simulate the reflecting wave field by backward calculation starting
with downwave conditions approaching to the wall. When a cross wall was put at 90° , the
resulting wave fields obtained from both wave models were in good agreement with the exact
solutions.
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Fig. 1 Comparison of a) parabolic and b) hyperbolic model results
to b) analytic solutions for the case of 180" arc.
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(a) (b)

(c)

Fig. 2 Comparison of a) parabolic and b)
hyperbolic model results to «c)
analytic solutions for the case of 90°

cross wall.
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