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Abstract

A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized
water reactor. The consequent and antecedent parameters of the fuzzyv rules are tuned by
the gradient descent method. The reactor model used for computer simulations is a
two-point xenon oscillation model. The reactor core is axially divided into two regions and
each region has one input and one output and is coupled with the other region. The
interaction between the regions of the reactor core is treated by a decoupling scheme. This
proposed control method exhibits very fast responses to a step or a ramp change of target
axial offset without any residual flux oscillations.

1. Introduction

The axial xenon oscillation in nuclear reactors is a highly nonlinear phenomenon that is
a function of several time-variant parameters such as boron level, rod position and power
level. Axially nonuniform buildup and removal of xenon cause the core power distribution to
oscillate between the core top and its bottom with a period of 20 to 30 hours.

Maintaining the local core power within acceptable limits is a common objective for
control problems. The core power distribution is usually manually regulated by the control
rods and the control rods are inserted in radially symmetric groups. The radial power shape
can be changed by moving independent rod groups. Control of the xenon oscillations is
mostly concentrated in the axial dimension. Axial power shaping in PWRs is achieved by
insertion or withdrawal of groups of fuli-length and part-fength controf rods and chianges in
boron concentration in the coolant [1].

Since the xenon oscillation control has been one of the most challenging control
problems in the nuclear field, there has been extensive research in this area, especially
using optimal control methods. The design of an optimal controller is in general based on
an assumed linear model that is an approximate representation of a nonlinear plant.
Moreover, the controller needs precise measurements or estimations of plant variables. On
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the contrary to this model-based controller, the neuro-fuzzy controllers do not rely on an
accurate description of the plant but are generally based on an expert’s knowledge of the
underlying process. Also, the controller can be designed to be automatically fine-tuned or
calibrated using the process data to obtain the desired performance.

Fuzzy logic and neural network methods were applied by Akin and Altin [2],
Ramaswamy, Edwards and Lee [3], and Heger, Alang-Rashid and Jamshidi [4] for the
power control of a nuclear reactor. Howeve_r, fuzzy logic and neural network methods have
not been applied for xcnon spatial oscillations. '

The reactor core is axially divided into several regions and each region has one input
and one output. Therefore, we can apply a conventional neuro-fuzzy controller for each
region. However, since each region 1s coupled with other regions, we should take into
account the interaction among these regions to obtain good performance. It is accomplished
through an approximate decoupling scheme.

A two-point (bottom and top) xenon oscillation model [5) is used in computer
simulations for the demonstration of the proposed controller.

2. Design of a Neuro-Fuzzy Control System

While the conventional neuro—fuzzy control schemes may be capable of dealing with
single-variable linear or nonlinear systems, considerable difficulty is encountered when
applied to multivariable nonlinear systems like the xenon oscillation control. The difficulty
stems not from the development of control algorithm but from the construction of the rule
base which is important to implement the neuro—fuzzy controller. It is difficult to construct
a rule-base due to the presence of interactions between control channels. From now on, a
neuro-fuzzy controller will be described for a SISO process and then a decoupling scheme
will be referred.

In a fuzzy control system of a channel, the 7-th rule can be described using the
first~order Sugeno-Takagi type [6] as follows:

R;:if xyis Ay AND - ANDx, is A,,, then u is £, (1)
where f; = 2(1,;):,- + 7, the output value of the 7-th rule. (2)
=
Generally, there is no restriction on the shape of a membership function. In this paper, the
following symmetric Gaussian membership function is used:
w,j(xj) = e , (3)
where ¢; is the center position of a peak of a membership function for the 7-th rule and

the j-th input and 0 is the sharpness for the 7-th rule and the j-th input.

The output of the fuzzy inference with 7 rules is given as follows:

w= 2w fi @
P
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where E)-, = w,‘/ i;wz. w; = ]iAU(xj)-
= j=

Fuzzv svstem parameters such as membership functions and the connectives between
lavers in a fuzzy neural network must be optimized for the good performances of the
controller. The gradient descent method is used to tune the parameters of the membership
functions by minimizing the objective function defined as follows:

E = %{/gl).""’(auf, + [u, — 21;]2)}, (3)

where A is a forgetting factor. A forgetting factor is introduced to take into account for an
exponential decay of the past data so that the control rules are modified fast according to
the change of process dynamics. And also, the membership function parameters are tuned
so that excessive control effort is not called for by containing an input-squared term in the
objective error function [7].

The membership function parameters ¢; and 0y or consequent parameters ¢; and
¥; which minimize the ahove objective functionare can be updated as follows:

(xi—_ Cij)

ci(t+1) = cy(H— 7;,,[’21/1"”[ (@ + Du, — wu,|(fi— ZIP)ET, (6)

2

oi(t+1) = o, t)—ﬂgpgl/l’f'"[(a + Duy, — z:Z](f,~—21p)E—m;;;ﬁ, )

i
[[,'j(t+ 1) = q;;(t)—m;l)Z]A’Ap[(a + l)llp - 7.1;]—1;)—,-xj, (8)

PAEHD) = 7= 0, B2 (a + Doy = 1T w, ()

=

The procedure of designing a SISO neuro-fuzzy controller described above indicates
that only little qualitative knowledge about the process being controlled is required for
deriving the rule-base. Such a controller will not function well when applied to
multivariable systems in the presence of interactions among channels, To achieve better
performance, it is necessary to take coupling effects into account.

It is assumed that dominant interactive sources are suitably identified. Then, we try to
use an approximate adaptive technique [8] to counter interactive effects. The proposed
neuro-fuzzy controller is given in Fig. 1.

3. Application of the Proposed Controller
to the Axial Xenon Oscillation Model

The axial xenon oscillation model, developed previously, was modified and then used 1o
demonstrate the proposed control algorithm{6][9]. The model employs the nonlinear xenon
and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation
having nonlinear power reactivity feedback. The total power of the reactor core is held
constant even though the power density varies as a function of both time and position.
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The sampling period is assumed to be 5 min. The axial xenon oscillation model was
divided into a lower and an upper region what is called as a two point model. Therefore,
the proposed control system consists of two channels. The first and second channel inputs
to the neuro-fuzzy controller are chosen as follows:

2H(® = w(H—»(#): the difference between the normalized target flux and the
normalized neutron flux in the lower half of the reactor,
23(D) = Z4(H—2,(t—1): the difference in absorber cross section Zq between
two neighboring time steps in the lower half of the reactor,
D = wy(D— v, 258 = Zp(8)— Za(t—1).
The dominant interaction inputs for the first and second channels are chosen as
12 (= wy(H—vy(D) and x} (=w (D — 31(8)), respectively. The additional inputs for

decoupling of the first and second channels consist of one term only as follows:

~ 1 41
gy = I, Cwy — vy), (10)
~ 2 y 2

wy = 1, (wy — wp). (1D

The adaptive laws for 2,,1 and ?az are as follows:
L+ = L' + nhud(w, — ), (12)
w2 42
L+ = 1) + niad (w — ), (13)

where u} is the first channel output of the controller in case that the decoupling is not

taken into account. Figure 2 shows the control architecture for the axial power "distribution.

The input from the adaptive controller [9] developed previously is used as the desired
output of the proposed controller for learning the fuzzy neural network, since the adaptive
controller gives good performance. The variation between two neighboring time steps is
used for control input. A measurement noise signal that has a Gaussian distribution with
mean 0 and variance 0.0001, is added to the normalized flux to simulate more realistic plant
environment. The proposed controller has 9 rules and two inputs for each channel and the
number of the channels is two.

Three different simulations were performed in order to demonstrate the proposed
controller for three cases; 1) tracking of the target axial shape which changes by step or
ramp [refer to Fig. 3], 2) simulation without the decoupling unit to investigate the
decoupling effect [refer to Fig. 4], and 3) dampening of the oscillations induced by a
perturbation [refer to Fig. 5). In all simulations, it is assumed that the reactor has been in
steady state at 100 percent power level with steady-state xenon conceniration before this
controller is applied.

4. Conclusions

A neuro-~fuzzy control algorithm with a learning function was investigated which can
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automatically construct and tune the rule base and membership functions. A forgetling
factor was introduced to account for an exponential decay of the past data so that the
control rules should be modified fast according to the change of process dyvnamics. The
proposed controller has on-line or off-line learning function based on the gradient descent
method.

When there exist interactions among channels, it is necessarv to take coupling effects
into account to achieve better performance. An approximate adaptive decoupling technique
was applied to counter mnteractive effects.

The proposed algorithm is demonstrated by using the two-point xenon oscillation model.
This controller traces the desired axial shape without delay although system parameters
changes by step and ramp and damps without delay some oscillations induced by external
means. Also, this algorithm uses two kinds of measurements signals only' the neutron flux
measurements and the macroscopic cross sections of absorbers (control rod position and
boron concentration) at each location without estimating the xenon and iodine
concentrations. However, Although its parameters are tuned automatically, it is known that
its performance is affected a little by the assumed initial values of the parameters.

REFERENCES

1. B. Frogner and H. 5. Rao, "Control of Nuclear Power Plants,” IEEE Trans. Auto.
Contr., Vol. 23, pp. 405-417, 1978.

2. H. L. Akin and V. Altin, "Rule-Based Fuzzv Logic Controller for a PWR-Tvpe Nuclear
Power Plant,” IEEE Trans. Nucl Sci.. Vol 38, No. 2, Apr. 1991.

3. P. Ramaswamy, R. M. Edwards, and K. Y. Lee, "An Automatic Tuning Method of a
Fuzzy Logic Controller for Nuclear Reactors,” IEEE Trans. Nucl Sci, Vol. 40, No. 4.
pp. 1253-1262 (1993).

4. A. S. Heger, N. K. Alang-Rashid and M. Jamshidi, "Application of Fuzzy Logic in

Nuclear Reactor Control Part 1@ An Assessment of State-of-the-Art,” Nucl Safety,

Vol. 36, No. 1, pp. 109-121 (1995)

R. J. Onega and R. A. Kisner, "An Axial Xenon Oscillation Model,” Annals of Nuclear

Energy, Vol 5, pp. 13-19, 1978.

6. T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to

Modeling and Control,” [EEE Trans. System, Man, Cybern., Vol. 1, pp. 116-132, 1985.

Man Gyun Na and Jae Hyung Lim, "A Fuzzy Controller Based on Self-Tuning Rules

for Nuclear Steam Generator Water Level,” to be published in KSME J., Oct. 1997.

8. Junhong Nie, "Fuzzy Control of Multivariable Nonlinear Servomechanisms with Explicit

Decoupling Scheme,” I[EEE Trans. Fuzzy Syst., Vol. 5, No. 2, pp. 304-311, Mayv 1997.

Man Gyun Na, B. R. Upadhyaya, and Jung In Choi, "Adaptive Control for Axial Power

2]

©

Distribution in Nuclear Reactors,” Nucl Sci. Eng., submitted, July 1997.

-303 -



nommalizad ampitude

:as Nonmalized flux, xenon. and iodine responses at the lower half of the reactor core.

¥, N
s (=
AT wh \"'\\ .t __\"'l/‘
I T Y
‘ ¥
: s Alload)

Fig. 1. A fuzzy neural network.
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Fig. 3. Performance of the proposed controller due to ramp and step changes

of target axial shape (with the decoupling unit).
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Fig. 4. Performance of the proposed controller due to ramp and step changes
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for the removal of free oscillations.
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(b1 Macroscopic cross sections of the absorber in the lower and upper halves

of the reactor core.
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