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Abstract

Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in
various fields. The wavelet transform can be used 10 compress the signal and image due to its
inherent properties. We applied the wavelet transform compression and reconstruction to the
neutron cross section data. Numerical tests illustrate that the signal compression using wavelet
is very effective to reduce the data saving spaces.

1. Introduction

After the basic concepts of wavelet theory were put forth in a paper by Gabor in 1945, the
wavelets have been a very popular topic of conversations in so many different fields of science
and engineering such as sound analysis, detection of edges and singularities and solving
differential equations. [1,2,3,4] Also some people use wavelets to decompose and reconstruct
of physical data.

In this study we concentrate on the compressing and reconstructing of nuclear data by using
some Discrete Wavelet Transforms (DWTs).

II. Overview of Wavelets

A wavelet, in the sense of the Discrete Wavelet Transform (DWT), is an orthogonal
function that can be applied to a finite group of data. Functionally it is very similar to the
Discrete Fourier Transform. Wavelet bases are defined by dilation and translation operation
such as: [5]
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for some @ (x)e (2 (R). Where ¢;’s are wavelet coefficients and M is referred to as the order
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Generally the area under the wavelet function over the space should be unity, which requires

that
Y =2 2
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Because equation (1) is orthogonal to its translations only, we need an equation, which is
orthogonal to its dilations for DWT orthogonality. Such a function ¥ exists and is given by
the following equation
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are required.

Within each family of wavelets are wavelet subclasses distinguished by the number of
coefficients and by the level of iteration. Wavelets are classified within a family most often by
the number of vanishing moments, which is an extra set of mathematical relationships for the
coefficients that must be satisfied. Several kinds of wavelet bases used in this study are shown
in Figure 1 and these coefficients (c;’s) are summarized in Table 1.

Suppose that a finite sequence or input values s, k=1,2,...,K, where K is a power of two

are given. Then the discrete wavelet transform can be written as:
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This DWT process is shown in Figure 2.

II1. Compression and Reconstruction Using Wavelets

Signal compression method using the wavelet families is similar to the denoising noisy data.
In the denoising problem we choose a particular threshold value (e.g., two standard deviation),
then set to zero all coefficients that are less than the threshold. [6] The signal compression also
uses the thresholding method. If we fix a threshold, set to zero all wavelet-transformed signal
less than that, and do inverse transform, we can get the reconstruct signal within some error

bound.
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IV. Numerical Tests and Conclusions

For doing signal compression and reconstruction, we use four wavelet families, ‘Haar’,
‘Daubechies-4’, ‘Coiflet-3’, ‘Symmlet-10" and 256 nuclear cross section data provided by
Foster Jr. and Glasgow. [7] For various wavelets, s”’s are plotted in Figure 3. From Figure 3, we
note that although the number of §’s is decreased, the shape of signal is preserved. Figure 4
shows the reconstructed signal (that is, nuclear data in this case) and Table II shows the Signal
to Noise Ratio (SNR) for each threshold values, 0.01, 0.1, and 1.0. SNR is defined by

yi() =u;(t) +n,(2),
SNR =10x loglo(M) [dB], ®
Efjn,(1)[']
where, y;’s are measured signal, ;s are original signal, and n;’s are noise. Table III shows the
number of data that are set to zero during compression.

In conclusion, the compression of signal using wavelets can reduce the data storage within
some error bound. If we choose a more proper wavelet family depending on the signal, we can
get smaller error. So wavelet compression and reconstruction could be a good way to record
nuclear data or power plant operating data in smaller data storage space. This will also facilitate
the transmission of the data. Currently, we are also applying the method to the transient
measurement data of a nuclear power plant.
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Figure 1. Several different families of wavelets
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Figure 2. Diagram of discrete wavelet transform for 16 data
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Figure 4. Reconstructed nuclear data by each wavelet




Table 1. Coefficients for several wavelet families

Coefficients Haar Daubechies-4 Coiflet-3 Symmlet-10

Cy 1.0 0.6830126974 -0.0053648374 0.0010891704

c 1.0 1.1830126966 0.0110062534 0.0001352450
c, - 0.3169873009 0.0331671208 -0.0122206427
cy - -0.1830126983 -0.0930155286 -0.0020723639
Cy - - -0.0864415271 0.0649509243
Cs - - 0.5730066671 0.0164188696
Ce - - 1.1225705100 -0.2255589739
Cq - - 0.6059671487 -0.1002402153
Cg - - -0.1015402820 0.6670713428
Co - - -0.1163925014 1.0882515350
Ch - - 0.0488681892 0.5428130096
oy - - 0.0224584821 -0.0502565397
Cpy - - -0.0127392020 -0.0452407725
cp - - -0.0036409178 0.0707035675
s - - 0.0015804102 0.0081528167
Cys - - 0.0006593304 -0.0287862322
Ce - - -0.0001003855 -0.0011375353
Cyz - - -0.0000489315 0.0064957284
Cys - - - 0.0000806612
Cyo - - - -0.0006495899

Table II. SNR of each wavelet [dB]

Threshold Haar Daubechies-4 Coiflet-3 Symmlet-10
0.01 60.2651 57.4903 55.5732 56.1650
0.10 32.6986 33.1643 33.7586 34.6747
1.00 19.2814 20.6087 20.7201 20.3920

Table III. Number (portion) of Data set to zero

Threshold Haar Daubechies-4 Coiflet-3 _Symmlet-10
0.01 26(10.15%") 39(15.23%) 52(20.31%) 49(19.14%)
0.10 163(63.67%) 186(72.66%) 186(72.66%) 187(73.05%)
1.00 235(91.80%) 241(94.14%) 244(9531%) 243(94.92%)

* Portion is given by (Number of data to be zero) / (Number of total data) * 100 (%)
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