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Abstract

A new method based on the alternating conditional expectation (ACE) algorithm is developed to
calculate axial shape index (ASI) for the 3-level excore detector. The ACE algorithm, a type of non-
parametric regression algorithms, yields an optimal relationship between a dependent variable and
multiple independent variables. In this study, the simple correlation between ASI and excore detector
signals is developed using the Younggwang nuclear power plant unit 3 (YGN-3) data without any
preprocessing on the relationships between independent variables and dependent variable. The
numerical results show that simple correlations exist between the three excore signals and ASI of the
core. The accuracy of the new method is much better than those of the current CPC and COLSS
algorithms.

I. Introduction

Excore detector plays important roles in safe operation of the nuclear power plant. In PWR, safety-
grade excore detectors mounted in the reactor cavity region monitor the core conditions including power
level, power distribution. The detector signals are used in calculating the safety-related parameters and
accurate evaluation of such parameters is very important for both safety and high performance of the
nuclear power plant. Axial shape index (ASI), which is defined as the fractional power difference
between the upper-half and the lower-half of the core, is an important information that the safety-grade
excore detector should generate.

There are two typical types of excore detectors used in nuclear power plants, one is 2-level (top and
bottom) and the other one is 3-level (top, middle, and bottom). For the 2-level excore detector, it is
relatively easy to calculate the ASI information using the excore signals. This is because the top
detector mainly responds to power of upper-half core and the bottom detector signal is highly related to
power of the lower-half core. However, in the case of the 3-level detector, which is used in CE-type
nuclear power plants, it is not easy to find an accurate relationship between detector signals and ASI of
the core. This is due to the fact that both upper-half and lower-half power contribute to the signal of the
middle detector.

In CPC (Core Protection Calculator), which is the core protection system of CE-type plants, the
safety-related parameters such as DNBR, LPD (Local Power Density), ASI etc. are calculated using the
excore detector signals[1]. In current method, axial power distribution is obtained for 20 axial nodes
through a power synthesis algorithm. Then ASI is calculated using the resulting axial power distribution.
The accuracy of ASI calculated in the current CPC, is fairly poor. Poor quality of ASI is one of the
factors that limit flexible operation of the reactor core. The objective of the present work is to develop a
methodology based on the ACE algorithm to calculate accurate ASI using three signals of the 3-level
excore detector.

The ACE method is a generalized regression algorithm that yields an optimal relationship between a
dependent variable y and multiple independent variables {x, ,#=1,---, p}. The objective of the ACE

algorithm is to find optimal transformations 6(y) and {¢ (x,), n=1,--, p} which maximize the

statistical correlation between 8()) and Z #,(x,) without a priori estimate of the functional forms



&y) and ¢, (x,). Once the optimal transformations are obtained, simple regression analysis is
performed to determine the functional forms for the transformed dependent and independent variables.

II. The ACE Algorithm

The ACE algorithm was formally derived [2] through a functional analysis approach. Instead of
repeating the formal derivation, we begin with a physical justification of the ACE algorithm, which
serves as a heuristic derivation of the basic algorithm. The approach we take is based on a physical
interpretation of the conditional expectation for a set of discrete data points[3, 4]. We use a bivariate
formulation to illustrate the concept and make the necessary extension to multivariate regression
problems.

For a bivariate regression problem with a set of NV experimental data points {(x,,y,), i=1,--, N},

we wish to find a transformation &(y) of the dependent variable y and a functional fit ¢(x) such that
the square error in the regression of 6(y,) and ¢(x,)

2 1 y 2
€ =W;[0(y.)—¢(x,)] N

is minimized. We assume that the optimal transformations, &(y) and ¢@(x) exist. And we also assume,
without loss of generality, that the optimal transformations, 6(y) and ¢(x), minimizing Eq. (1) are
properly normalized such that E[6(y)] = E[¢(x)]=0 and E’[()]=1.

With a judicious selection of the transformation 8(y), the error in Eq. (1) could vanish, in principle,
if 6(y,) equals ¢(x,) for every point. In practice, however, this idealized situation will not materialize
because the experimental data contain random noises and so do &(y,) and @#(x,). Thus, a smooth
functional representation 6(y) cannot be equated exactly to #(x) at every data point. Instead, 6(y,)
is considered, in the ACE algorithm, the expectation of several realizations of ¢(x) for the i point,
rather than a single unique realization ¢(x,) as in conventional regression analysis. Thus, we interpret
&(y,) as a conditional expectation E[¢(x)| y =y,] to minimize Eq. (1). In most regression problems, in

practice, there is usually only one value y,, and hence one value ¢(x,), for the i” data point, and the
conditional expectation &(y,) has to be evaluated with the neighboring values {d¢(x,),
j=i-M,-- i+ M}, for some M. In the simplest approach, &(y,) could be determined as an

arithmetic average of the neighboring data. In general, some kind of weighted average over the
neighboring data may be taken as the conditional expectation.
With this smoothing concept, the transformation @(y) at the i”point is obtained as S[¢(x)| y=y1

instead of exact conditional expectation. We may equivalently consider ¢(x,) as the conditional

expectation E[6(y)|x=xj] = S[0(y)|x=x ;1. Therefore the optimal transformations, 6(y) and

#(x) , may be defined as

_ Sy
[stecoly]”

In practical problem, the smoothing operator, S| q y] can be defined as weighted sum of @ for a given

interval of y. The ACE algorithm consists of an iterative use of the two smoothing operations of Eq. (2)
in alternating directions.
Based on the bivariate derivation of the ACE algorithm, we can generalize Eq. (2) for a multivariate
problem, given a set of experimental data {(y,,x,,,*--,x,), i =L+, N }:
S| X 4
0(y)=M)—, ¢n<x")=S(0(y)—2¢,(x,)|y) 3)
FE b

o(y) #(x) = S[O(Y)|x]. @
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The optimal transformations, @ and ¢, --,4, cannot be obtained directly because they are coupled to

each other through Egs. (3). Thus, the ACE algorithm requires the following iterative procedures:

1. Initialization. 6°(y)=y/|y| and ¢(x,)=-¢,(x,)=0.

2. Inner iteration. Sort 6(y) and {¢,(x,), /=1,---,p and /s n} in an ascending order of ¢, (x,)
and evaluate ¢, (x,) for iteration step  using the second equation of Eq. (3). And then iterate until
squared error fails to decrease.

3. Outer iteration. Sort { ¢ (x,), n=1---,p} in an ascending order of 8(y) and calculate 6(y)
using the first equation of Eq. (3). Continue with step 2 until squared error between 6(y) and
¢, (x,) fails to decrease.

When convergence is attained, the data in each transformed variable are usually smooth and slowly

varying. Selecting simple functional forms for the transformations, we perform standard regression
analysis for each transformation and finally obtain the functional form of y versus x,,---,x, if 8(y)

has an inverse function.

HI. Application of ACE Algorithm to 3-Level Excore Detector Signals

We now apply the ACE algorithm to 3-level ex-core detector signals to get a correlation between
those signals and ASI values. In YGN unit 3, 8 channels of instrumentation are furnished for ex-core
neutron flux detection, 2 for startup, 2 for control, and 4 for safety. In current CPC algorithm, the axial
power distribution is calculated through a power synthesis method and the ASI value is calculated using
the resulted axial power distribution. The power synthesis method is based on a simple correlation
between excore detector signals and core power distribution. The fitting coefficients are determined
using a set of measured data, which are collected during startup of the core cycle. Table 1 shows the
excore detector signals and the corresponding ASI values for the second cycle of YGN unit 3.

Table 1. Reference data for ASI and 3-level ex-core detector signals

dy dz ds ASI di d; ds ASI
0.3660 0.3903 0.2437 -0.1607 0.3554 0.3915 0.2530 -0.1179
0.3653 0.3903 0.2444 -0.1570 0.3551 0.3914 0.2539 -0.1167

0.3645 0.3905 0.2451 -0.1541 0.3548 0.3914 0.2538 -0.1148
0.3635 0.3907 0.2459 -0.1509 0.3543 0.3917 0.2540 -0.1131
0.3630 0.3907 0.2463 -0.1481 0.3544 0.3916 0.2541 -0.1132

0.3624 0.3908 0.2468 -0.1460 0.3539 0.3914 0.2547 -0.1110
0.3616 0.3911 0.2473 -0.1435 0.3534 0.3914 0.2552 -0.1085
0.3599 0.3912 0.2489 -0.1366 0.3517 0.3913 0.2570 -0.1023

0.3594 0.3915 0.2491 -0.1350 0.3504 0.3915 0.2581 -0.0966
0.35%94 0.3912 0.2494 -0.1346 0.3492 0.3918 0.2591 -0.0925
0.3586 0.3914 0.2500 -0.1307 0.3493 0.3916 0.2591 -0.0922
0.3577 0.3916 0.2507 -0.1281 0.3476 0.3918 0.2606 -0.0858
0.3564 0.3917 0.2519 -0.1228 0.3472 0.3918 0.2609 -0.0842
0.3566 0.3916 0.2519 -0.1231 0.3462 0.3919 0.2618 -0.0803

0.3562 0.3915 0.2524 -0.1209

In Table I, di, dz, and d; mean that average ex-core detector signals for top, middle, and bottom
detectors, respectively and the values of them are normalized so that the sum of d,, d», and d; equals to 1.
From the data of Table I, we run the ACE algorithm based on following relations:
(x,,%,,%,,¥) =(d, - d;.d,.d,, ASI) )

In Eq. (4), we use the difference between the values of upper detector and of bottom detector as the first
variable because the basic relationship between this difference and ASI is well known.

Using the CG-ACE code[4], we achieved the converged transformations, with a convergence
criterion of 10 x10™° both for inner and outer iterations and with a windowing factor of 0.5, afier 4
outer iterations. We present the transformations, ¢ (x, ) versus x, and &(y) versus y, obtained
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through the ACE algorithm in Fig. 1. It is clear from Fig. 1 that the ACE algorithm generates simple
functional forms both for the dependent and independent variables. The squared error defined in Eq. (1)
is 1363x10™ for this application. As shown in the figure, we can get clear relationship between
x,(=d, —d,) and y(= ASI). Using the plots of Fig. 1 and a standard regression tool, we can obtain

simple analytic functions, &(y) and {¢,(x,), n=1---3}. For example, &(y) and ¢ (x,) can be
represented as first order linear function of x, and y, respectively. For the fitting of the other

functions in Fig. 1, we used piecewise linear functions. In (b) of Fig. 1, there are some fluctuation in the
range of 0.391 and 0.392 in x,. It is considered as small noise because the scale of ¢, is so small

compared to that of ¢,.

After individual analytic functions of &(y) and {¢,(x,), n=1,---,3} are obtained, we can get the
final form of a new ASI correlation through a simple inversion process and a few manipulations as
followings:

ASI =9829x107 + A + A, ~-2114(d, -d,)+ A, d, + A d,,
&)
where the coefficients, A4, through A, in Eq. (5) are given as
- 00584, 0236 ford, <0248
(4,,4,)=40, 0 for d, <0257
—-0.0277, 0108 else

In order to test the accuracy of the new ASI correlation represented by Eq. (5), we have performed
simulation of the ASI data which are sampled during normal power operation of the cycle 2 of YGN
unit 3. The data are summarized in Table II.

0583, —1492 ford, <0391

AL A=
(4,4) {o.o, 0.0 else

Table I1. Simulation data set for the cycle 2 of YGN unit 3

Bumup d] dz d3 ASImf ASIcpc ASICOLSS
GWD/MTU)
11.240 0.335 0.391 0.274 -0.0205 -0.0336 -0.0242
12.010 0.332 0.390 0.278 0.0172 -0.0195 -0.0127
13.560 0.331 0.389 0.280 -0.0136 -0.0065 -0.0293
14.330 0.329 0.389 0.282 -0.0033 0.0000 -0.0029
14.590 0.329 0.388 0.283 -0.0212 0.0050 0.0096
15.550 0.330 0.388 0.282 -0.0006 -0.0049 0.0142
16.910 0.329 0.388 0.283 0.0070 -0.0091 -0.0059
17.420 0.329 0.386 0.285 0.0120 -0.0047 0.0115
17.940 0.330 0.385 0.285 0.0007 0.0114 -0.0252
17.940 0.331 0.385 0.284 0.0144 0.0120 0.0010
18.190 0.331 0.385 0.284 -0.0315 0.0105 0.0101
18.460 0.332 0.385 0.283 -0.0035 -0.0109 0.0165
18.460 0.332 0.385 0.284 0.0117 -0.0103 -0.0057
18.710 0.332 0.383 0.285 0.0179 -0.0141 0.0050
18.960 0.332 0.384 0.285 -0.0109 0.0066 -0.0380
19.220 0.333 0.384 0.283 0.0067 0.0049 -0.0018
19.490 0.333 0.383 0.284 -0.0381 0.0050 0.0115
20.220 0.335 0.383 0.282 0.0000 -0.0132 0.0184
20.220 0.333 0.381 0.285 0.0064 -0.0153 -0.0165

In Table 11, ASL., is the reference ASI obtained using the measured 3-dimensional power and ASlcpc,
ASI ¢orss mean that ASI values calculated by CPC and COLSS[5], respectively and we used averaged
ASlIcpe values for 4 channels of CPC values. Comparing Tables I and II, we can see that they are very
different data sets. In Table I, the range of ASI is -0.1607 ~ -0.0803. The range of ASI.s in Table II,
however, is -0.0381 ~ 0.0144. There are two difficulties to predict ASI.s one is that ASI.r in Table II
has so small values, and second is that the range of ASI in Table I and ASI,¢ in Table II are different. It
means that correlations developed using the data in Table I should extrapolate to predict ASIin Table
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We calculated ASI using Eq. (5) for the data given in Table II and the prediction results are
summarized in Fig. 2(a). For the data in Table II, the average, rms, and maximum errors are 14.41%,
42.38%, and 148.04%, respectively. However, the meaning of relative error in this application is not so
much and it might be misunderstanding in some sense because the absolute values of ASI are very small.
Rather, the absolute differences between ASl.r and ASI calculated by Eq. (5) are more important to
check the accuracy of Eq. (5). The average, rms, and maximum differences of Eq. (5) are -0.000699,
0.0026, and -0.00635, respectively.

Now we compared the accuracy of Eq. (5) to the results of CPC and COLSS. Fig. 2(b) show the
comparison results. As shown in the figure, ASI, calculated by Eq. (5) is much closer to ASI.sthan
ASlcpc and ASI corss. CPC shows the largest error and it become larger as going to end-of-cycle. In
case of COLSS, it shows somewhat larger error than Eq. (5). However, we have to remember that
COLSS calculates the ASI value using in-core detectors not ex-core detectors.

IV. Summary and Conclusions

In this work, the ACE algorithm is applied to finding the new correlation between signals of the 3-
level excore detector and ASI of the reactor core. The ACE algorithm is a generalized regression
algorithm that yields an optimal relationship between a dependent variable and multiple independent
variables without any preprocessing on the relationships between independent variables and dependent
variable. We devleoped ASI correlation, Eq. (5) using ACE algorithm and it has been tested for the
operation data of the cycle 2 of YGN unit 3. The average, rms, and maximum differences of Eq. (5) are
-0.000699, 0.0026, and -0.0065, respectively. We compared Eq. (5) to CPC and COLSS algorithms
and the prediction accuracy of Eq. (5) is much better than those of CPC and COLSS.

Based on previous works and this study, we conclude that ACE algorithm can be used to make
correlations for various engineering problems which are available experimental data such as critical heat
flux problem, ASI problem and so on.
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Fig. 2 The comparison results of the prediction accuracy
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