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Abstract

The effect of rotary inertia of concentrated masses on the natural vibration of the simply
supported-simply supported fluid conveying pipe has been studied. For the analysis Galerkin's method
is used for transformation of the governing equation to the eigenvalue problem and the natural
frequencies and mode shapes for the system have been found. Introduction of rotary inertia results in
lots of change on the natural frequencies and mode shapes and its effect is highly noticed at the higher
natural frequencies and mode shapes. Consideration of rotary inertia results in much decrease on the
natural frequencies and its neglect could lead to erroneous results.

1. Introduction

The flow-induced vibration in the industry field has being more and more studied since it always
contain the possibility of the severe accidents by the several types of the flow-induced vibration. At
this field, knowledge on the natural frequency and mode shape of a system is most important and is
the basis of the aseismatic design, vibration analysis, and noise analysis. G. W. Housner [1] was the
first who had derived the correct govering equation of motion of a fluid conveying pipe. For several
decades, many investigators have studied about this problem by assuming several boundary conditions.
Although the vibration analysis of the pipe which having some concentrated masses without fluid flow
has been studied [2-5], the vibration analysis of that case when fluid flows through the pipe was not
until 1970 when J. L. Hill et al. published their paper on ASME [6]. Since then, the effect of
concentrated masses has been studied in the flow-induced vibration field {1,8] without regard to rotary
inertia effect. Although some interesting papers [4,5] regarding rotary inertia effect are published, no
one is introduced it into the flow-induced vibration field. In this paper, effect of rotary inertia of the
concentrated masses is newly introduced in the fluid conveying pipe system and is accordingly included
in the goveming equation. The fluid conveying pipe which having simply-supported simply-supported
boundary condition is taken for the analysis.
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2. Theory and Mathematical Development

The well known goveming equation for the pipe conveying incompressible fluid is [1]

2 2
EI g Y.+ o U gtax n m,Uz—g;%+(mf+ m,)—%t% =0, @

According to H. H. Pan et al. [4,5], the effect of concentrated masses placed at x= x, can be written

as follows :

fm&(x x)-a—t'zz—“g[ﬁftﬁ(x x)aatzJ Ji=mux? (0))

Finally, the goveming equation for the simply supported - simply supported fluid conveying pipe as
shown in Fig. 1 becomes

0ty 2 0% N I-LY
EIax4 +2mU-Z2 ata + m U p +{mf+m,+ l21m,6(x x,)] Py

{flfa(x %) 8x8t2} ©)

where,

4
El%x% ; elastic force, the usual distributed load with bending

2m U aa o ; the inertia force associated with the Coliolis acceleration due to the relative motion of

2
the fluid inside the pipe which has an angular velocity -(%ay; at any point along its

length

2 322 L . . .
m U Py ; the inertia force associated with the fluid flowing a curved path

{mf+ m,+ ﬁ mo(x— x)] Py ; the inertia force due to lateral acceleration of the pipe

including the moving medium and the concentrated masses

9 f‘ 2% ). I
ax{ ) Jid(x—x) I } ; rotary inertia force due to the concentrated masses.

Since the deflection and the bending moment of the simply supported - simply supported pipe are zero
at x=0 and L, the boundary conditions for the system are as follows

3(0,=»(L,H=0, at2 230,9= atz 22 (L, H=0. “@

Here 3 is the pipe displacement, x the axial coordinate, { the time, m; and m, the mass
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per unit length of the fluid and pipe, and L the tube length, respectively ; [/ the constant flow
velocity, m; and J; the concentrated mass and its rotary inertia placed at x= x,, respectively ; M
number of concentrated masses, § Dirac delta function, and EJ the flexural rigidity of the uniform
pipe.

To derive the governing equation some assumptions are made as follows: Euler-Bernoulli pipe, the
small lateral motion about the equilibrium position, neglect effect of the gravity, uniform pipe except
the concentrated masses, neglect rotary inertia and shear forces of the pipe itself, and steady state
uniform flow.

Introducing dimensionless parameters, eq. (3) is converted into

as‘* 32 1 908 8582' 352 SE {1+ PITES Ei)}—g;?

- Buate-22%)-o, )

where the dimensionless parameters are
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The motion #7(&,7) can be written as follows
WD =au(DD(8). 6)
By inserting eq. (6) into eq. (4), the governing equation becomes

[{1+ Zadte- )00~ us (6-800.O~ Fue-£)0,8)] du(D

+2uB* 0 (&) @n(D)+ {0, (H+270,(8)a,(D=0. )
Galerkin's method [6,9] says that @,,(&) can be represented by the superposition of ¢,(&)

which is the mode shape function of the pipe without fluid and the concentrated masses. Then eq. (6)
becomes

NE D= X an(Dbn() ®)
Pu(E)=sin(,€) and A,=mr, m=1,2,3,..
Introducing the orthogonality of the functions, multiplying eq. (7) by @,(£), and integrating it about
& from £=( to £=1, we finally obtain the governing equation in the matrix form
[Amn] @n(D)+[Bun) am(D+[Cralan(=0, ©)
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Rearranging eq. (9) we get
[MI{#()}+ [ K] {r(2)}=0. (10)

where

[ {enDN ran—[ [0] [A] _[—[A] [0]
o) ={ {am ML v =[ (0 (] e =] G (9]

Multiplying eq (9) by [M]™', we get

(D{D}+ (M K{p(D}= {0} (1

Since a,{)=e’ ¥ where j=V —1 and ¥ are constants,

=[{ an(DN_ o
#(2) { {a,,,(t)}} ™ (W) (12)
Introducing eq. (12) into eq. (11)
jl H{TY+ M K@) = {0), (13)
[DH{®?} - 0{F}= {0} ; 14)
_- = -1 _[[AI7}[B] [Al'[C]
where v jw, [DI=I{M]"'[K] [ g [0] ]

Eq. (14) can', therefore , be written as
LAVI{®}= {0}, (15)

where  [Ay)]=[D]- 1.
The eigenvalue problem (15) has a nontrivial solution only if the characteristic determinant, ie. the
determinant of the matrix [Av)], vanishes [9] :

IAVI=0. (16)
Generally, eigenvalue of the deierminant has its real and imaginary part as follows :
= Re(w) + jIm(w). an

The real component, Re(w), corresponds to the frequency of oscillation, whereas the imaginary

component, Im(w), is associated with stability of the system. In this paper, analysis only on Re(w)
is done to find natural frequency related vibration and stability related issue will be treated in another
paper.

3. Results
The natural frequencies and mode shapes are calculated by the computer code developed and the

effect of rotary inertia can be identified by comparing the results with or without rotary inertia. Some
results or the study are as follows:
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Figure 2 is the natural mode shapes of the system. Real lines are results of the system without
rotary inertia and dotted lines are with rotary inertia. As shown in the figure, rotary inertia gives small
effect on the first mode shape while it gives much on the second and third mode shapes. Special
interest is on the third mode shape. By introducing rotary inertia, one node is disappeared and only
one node is shown whereas there are two nodes when the system has no rotary inertia effect.

Figure 3 shows variation of the natural frequencies when the fluid velocity is changing. Three
natural frequencies are shown and the dotted lines are results of the system with rotary inertia while
real lines are results without rotary inertia. Introduction of rotary inertia gives much change for the
second and third natural frequencies while it gives small effect on the first natural frequency. By
increasing the fluid velocity the natural frequencies are decreased and go to zero. When the
dimensionless fluid velocity gets x, 2z, and 3 the first, second, and third natural frequencies have
zero value, respectively. Zero natural frequency is related with the system stability problem and is not
considered in this paper.

The system frequencies with or without rotary inertia are shown at Fig. 4 according to the mass
ratio change. For the case, rotary inertia results in much change for the higher natural frequencies. As
shown in the figure, change of the mass ratio gives very small effect on the natural frequencies.

4. Conclusion

Through the computer simulation and experiment, it has been identified that rotary inertia changes
not only the natural frequencies but also the natural mode shapes and the following conclusions can be
achieved.

1) Rotary inertia gives very much change on the higher natural frequencies and mode shapes.
2) The number and location of nodes can be changed by rotary inertia effect.

3) The fluid velocities for the zero natural frequency are unchanged by introduction of rotary
inertia and have the values of x, 2x, and 37 for the first, second, and third natural
frequencies, respectively.
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Fig. 1 Shematic diagram of the simply supported - simply supported fluid
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Fig. 2 Natural mode shapes for the simply supported - simply supported fluid conveying

pipe: §1=0.1, §2=0.5, a1=1.0, 0.2=0.2, p.1=0.01, p2=0.05, p=0.4, and u=0.5
. real lines are results without rotary inertia and dotted lines are with rotary inertia.
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Fig. 3 Natural frequency variation due to fluid Fig. 4 Natural frequency variation due to mass

velocity change: §1==0.3, §2=0.6, a1=0,2,
a2=0.1, p.1=0.018, “2=0'036' and p=0.2.

ratio change: §1=0.2, §2=0.5, a1=0.1,
a2=0.1, u1=0,004, p.2=0.025. and u=2.0.
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