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ABSTRACT

A nonlinear mathematical model of longitudinal combustion
instability appropriate for ramjets and augmentors was developed based
on modal analysis. The model was limited to a two-mode formulation.
The associated differential equations were solved both analytically and
numerically and used to perform parametric studies.

1. Introduction

In the development of ramjet and afterburner combustion systems, one of the major concerns
is the creation of large amplitude pressure oscillations by unsteady combustion. These self-
excited oscillations (referred to as combustion instabilities) are driven by a coupling between the
unsteady heat release and an acoustic oscillation at one of the resonant modes of the system.

Low frequency oscillations in the range of 50-500 Hz and generally characterized by
longitudinal modes at the resonant frequencies of the combustor seem to be the most important
in ramjet and afterburner combustion chambers. Several investigators such as Culick (1988),
Langhorne (1988), Bloxsidge, Dowling, and Langhorne (1988), and Shyy and Udaykumar (1990)
have suggested that these instabilities are primarily velocity sensitive.

For sufficiently strong excitations combustor oscillations become nonlinear. A mathematical
model of nonlinear velocity-sensitive combustion instability is, therefore, necessary to predict
ramjet and afterburner instabilities under such circumstances.

In this paper limited analytical work using a two-mode nonlinear model is conducted. Both
approximate analytical solutions and direct numerical solutions are obtained. The modal
amplitude equations are solved numerically under a variety of circumstances and a selection of
numerical results is presented graphically.

2. Governing Equations
Consider a combustion chamber in the form of a duct of length L having an inlet at the left
end. The combustion chamber contains a flowing mixture of fuel, oxidizer, and products of

combustion which will be treated herein as an inviscid nonconducting ideal gas with gas constant
R and ratio of specific heats y. Treating the flow as one-dimensional, the respective
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conservation equations for mass, linear momentum, and total energy are
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where x is axial position, t istime, p is density, u is axial velocity, p is pressure, D is axial
body force per unit volume, e is specific internal energy, and Q is the heat addition rate per unit
volume. The equations of state are
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It is convenient to introduce dimensionless quantities by the following transformations
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where the symbol - indicates a transition from dimensional quantities (tail) to corresponding
dimensionless quantities (tip), a bar indicates a steady state quantity (function of x only), a prime
indicates differentiation of a function of one variable with respect to its argument, p, is the initial
density, c, is the initial sound speed, u, is the dimensionless inlet velocity, ¢ denotes velocity
potential, and A denotes force potential. The dimensionless dependent variables are treated as
small perturbations from a reference state characterized by unit pressure, temperature, density,
and constant velocity u,. Terms that are linear in the perturbations will be called first order
terms, those quadratic in the perturbations second order terms, etc. It is desired to obtain a
system of equations structured such that the first order terms will be those associated with the
equations of linear acoustics and all additional effects (body force, heat addition, mean flow,
nonlinearity) will appear as second order corrections. (This approach is similar to that of Culick
(1988) and is motivated by observations that the disturbances associated with combustion
instabilities usually closely resemble the acoustic modes of the chamber.) Toward this end u,
will be treated as a first order term while the sources will be treated as second order terms.
Substituting (3) into (1) and (2), retaining only first and second order terms, and carrying out a
number of manipulations (omitted for the sake of brevity) yields
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for the stability problem. In (4) £ and n are dummy variables. Since Q is a second order term
according to the original assumptions, u is predicted to be a second order term (rather than first
order as originally assumed) while p and T are predicted to be first order terms.

In the present work the heat addition term Q will be used to account for the burning process
and the body force term A will be used to approximately represent the ability of devices such as
baffles and liners to modify the frequency and damping characteristics of the system. These latter
effects cannot be handled exactly in a one-dimensional formulation.
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3. Nonlinear Stability Analysis

Assuming
A= -nd-k[od (5)

(n and k being constants)
the wave equation (4) which includes nonlinear terms is
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(6)

In (5) the terms multiplied by k and n play the roles of respective generic frequency change and
damping effects not associated with either combustion or mean flow. To illustrate some of the
effects of nonlinearity in a relatively simple way, a two-mode solution will be discussed herein.

A two-mode model can be developed by assuming an approximate solution of (6) in the form

¢ -e[f®OV,® - £,O¥,0] @)

where e is a dimensionless measure of the initial disturbance amplitude. For the nonlinear
analysis the idealized burning-rate expression

Q- Qi Y,u(x,t-1)+» Yu(x,t-7)} (8)

will be used which incorporates both the linear and the nonlinear velocity-sensitive terms. For
simplicity, the amplification factors Y, and Y, are assumed to be constant.
Substituting (7) and (8) into (6), and using the modal analysis procedure leads to
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Equations (9) and (10) are a pair of coupled second-order nonlinear differential equations
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governing the modal amplitudes f, and f,. It can be seen that both the nonlinear gas dynamics
terms (multiplied by the C's) and the nonlinear combustion response terms (multiplied by the D's)
produce modal coupling.

Before discussing the numerical solution of these equations, it is of interest to illustrate a
fundamental behavior introduced by the nonlinear velocity-sensitive combustion response.
Toward this end the nonlinear gas dynamics terms will be ignored (C g = 0), mean flow effect®
will be neglected (u, - 0), the combustion response will be assumed to be purely quadratic with
zero time delay (Y, - 0, 7 - 0), and the combustion will be assumed to be uniformly
distributed (Q - 1). For closed/closed conditions (¢, - y2cos(nnx), Q_-nn ; n -1, 2)(9)
and (10) become

f, o nf, « n, . 2/20%(y-DeY £, f, - 0
" (12)
f, + nf, + 47°f, - ﬁnz(y—l)eYsz =0.

An approximate closed form solution to these equations will be found as follows. Assume

f, = A (Dcos(nnt) + B _(t)sin(nmt) ; n - 1,2. (13)

Substituting (13) and its time derivatives into (12) and ordering the terms yields
[2nB, + =B, - y27n’e(y-1)Y,(A,A, + B,B,)]cos(nt)

+[-2nA, - nnA, « V2n’e(y-1)Y,(A B, - A,B ) ]Isin(nt) +oe = 0

[4nB, + 2nqB, - _\iznze(y-l)yz(Af - B})]cos(2nt) (14)

+ [- 47:A2 - 2nnA, - —‘éznze(y—l)YzAlBl]sm(Znt) veee = 0

where ... indicates all terms involving harmonics other than the dominant one. Neglecting these
terms requires that

. 2
A+ %AI B %"B(Y-l)Yz(Ale -AB) -0

. V2
B, - %Bl + Lome(y-DY,(AA, - BB,) - 0
(15)

: V2
A+ DA . -E-ns(y-l)YzAlBl =0

2 2 2

: 2
B, - %Bz - —‘l[gne(y—l)Yz(Af -B)-0.

These are four coupled differential equations to be solved for the slowly varying amplitudes A,

A,, B;, and B,. Similar equations would be obtained by using the more formal method of

multiple scales (see Nayfeh [4]). These equations cannot be solved in closed form for all

situations. One special case in which a closed form solution is possible will be discussed herein.
It can be observed that
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Y (16)
satisfies (15), and reduces these equations to

B, - -';_Bl . %ne(y—l)YzBle -0
(17

: 2
B, - -"2_132 . ‘(;ne(y—l)YzBlz - 0.

It can be shown (with the details being omitted for the sake of brevity) that these equations have
the closed form solutions

B, -e % sec[- e(y-)Y,(1-¢ ?)]
27
(18)
2 _lt ‘ﬂ.t
B, - - %e 2 tan[—z%e(y-l)Yz(l -e 2)].
It is observed that (18) satisfy the initial conditions
B,(0)-1, B,0 -0. (19)

Thus, from (13), £,(0) = 0, £,(0) - =, £,(0) = 0, and £,(0) - 0. Substituting (18) into (13) yields

2 Ay
2
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Y
(20)
.n, .n,
f, - - —\/Ze 2 tan[—lt—e(y-l)Yz(l - e ?)]sin(2nt).
4 27
Substituting (20) into (7) yields the final result
_l[ -ﬂt
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Inspection of (18) shows that both B, and B, will eventually decay to zero for
Y, < v/ [e(y-1)] but will reach infinity in a finite time for Y, > 1/ [e(y-1)]. Thus the value
of Y, corresponding to neutral stability is

Y,- —3+ .
e(y-1)

(22)

Typical results for B, and B, are shown in Figure 1 (stable case) and Figure 2 (unstable case).
For the parametric values associated with these figures, (22) yields Y, - 5.0. It is interesting to
note from Figure 2 that the first mode initially decays and then grows. Energy from the first
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mode is first transferred to the second mode, causing it to grow. Then energy is transferred back
to the first mode, causing it to grow also. This "bootstrapping" effect is the basic mechanism of
nonlinear velocity-sensitive combustion instability. This mechanism is clearly contained within
the present model.

The fact that the first mode exhibits initial decay even for ultimately unstable cases has an
interesting implication for linear stability models. Such models investigate only the initial
behavior of small disturbances. Thus a linear stability analysis would always indicate stability
in the case of bootstrapping and completely miss the ultimate behavior. This is one reason why
a nonlinear model is needed to investigate velocity-sensitive combustion response. It appears to
be the rectification effect produced by the second term on the right-hand side of (8) which is
fundamental to bootstrapping. A similar rectification effect will be produced by any combustion
response exhibiting a Reynolds number dependence (typical of convection processes). The
quadratic form employed in (8) was chosen because it is the analytically simplest form which
allows for rectification. The relative values of Y, and Y, can be adjusted to approximate the
response of other Reynolds number dependant responses.

To obtain complete solutions to (12) requires numerical computation. In the present work a
standard fourth order Runge-Kutta procedure was employed with the modification that time
delayed terms were treated as known functions of time. Because of time delay, initial conditions
must be stated in the interval - © <t < 0. Quiescent conditions were always assumed in the
present work.

4. Parametric Studies

This section reports on several parametric studies. In all cases closed/closed acoustic
boundary conditions are assumed and the parametric values u,=0,k=0,v -12,n -0.1are
employed. Equations (9) and (10) are solved numerically to produce the predictions. In these
equations the terms multiplied by C's represent nonlinear gas dynamics effects and those
multiplied by D's are associated with the combustion response. It is of interest to determine the
importance of the nonlinear gas dynamics effects. Toward this end some simulations were
carried out using (9) and (10) with all C's equated to zero. These will be labeled D. Other
simulations were performed using the complete form of (9) and (10). These will be labeled CD.
All of the calculations were performed with a time step At-0.01. The initial conditions
employed were

f©0-1,f@-0,f0-0,f0)-0. (23)

Table 1 shows the stability predictions for four related D and CD cases involving uniform
combustion. It can be seen that the inclusion of the nonlinear gas dynamics effects in the model
can have an important influence. This becomes more apparent from inspection of Figures 3-6.
Figures 3 (D) and 4 (CD) both show stable behavior but exhibit considerable disagreement as to
the behavior of the modal amplitudes. Figures 5 (D) and 6 (CD) show even more disagreement
in that the former exhibits unstable behavior while the latter exhibits marginally stable behavior.
It is possible, of course, that extending the calculation illustrated in Figure 6 for a sufficiently
long time period would ultimately reveal unstable behavior. This demonstrates one of the
difficulties of nonlinear stability analysis. The stability predictions may depend on the time
interval chosen for the simulations.

Table 2 presents stability predictions for purely quadratic combustion response with no time
delay based on the CD model. The influences on the predictions of the source location and the
combustion strength are illustrated. The pattern of predictions appears to be symmetric about the
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centerline. For a given location the system becomes more unstable as the combustion strength
is increased. No location appears to be completely free of instability. Figures 7 and 8 show
representative stable (Figure 7) and unstable (Figure 8) behaviors with the source at the chamber
center. These predictions illustrate the ability of the model to quickly estimate the effect of
changes in the source position.

Table 3 contains predictions corresponding to Table 2 made using the D model. The same
pattern of symmetry about the centerline is exhibited. There are, however, a number of
differences in the stability predictions. This illustrates the importance of retaining the nonlinear
gas dynamics effects.

5. Conclusion

In this paper a nonlinear mathematical model of longitudinal combustion instability
appropriate for ramjets and augmentors was developed based on modal analysis. The model was
limited to a two-mode formulation. The two-mode nonlinear model is capable of predicting the
bootstrapping effect which characterizes nonlinear velocity-sensitive combustion response. It
is, therefore, a useful vehicle for parametric studies designed to determine the influence of
combustion distribution on stability behavior. It can be extended in a straightforward way to an
arbitrary number of modes at the cost of escalating computational effort.

The combustion response function (8) is an idealization chosen for analytical convenience.
Real nonlinear velocity-sensitive response is described by more complex functions which do not
lend themselves to modal analysis. An alternative to the modeling is to employ an analog
experimental system in which a hotwire anemometer plays the role of the velocity-sensitive
element.
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Figure 1. Amplitude histories predicted by
perturbation solution (stable case)

Figure 3. Runge-Kutta modal amplitude
predictions for uniform combustion (Q - 1,
D, Y, -40)

Figure 2. Amplitude histories predicted by
perturbation solution (unstable case)

Figure 4. Runge-Kutta modal amplitude
predictions for uniform combustion (Q - 1,
CD, Y, -40)
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Figure 5. Runge-Kutta modal amplitude Figure 6. Runge-Kutta modal amplitude
predictions for uniform combustion (Q - 1, predictions for uniform combustion (Q - 1,

D, Y, - 6.0) CD, Y, - 6.0)

Mz'/W/'/5/’/’J’J'I'J'/'I'J'J‘?'/'I’/'f'/'/'(

Figure 7. Runge-Kutta modal amplitude Figure 8. Runge-Kutta modal amplitude
predictions for unit concentrated combustion predictions for unit concentrated combustion
(Q- A(x-05),Y,-00,Y,-40) (Q-A(X-05),Y,-50)

Table 1. Stability predictions for uniform combustion (Q-1,e-01,1 - 00, Y, -00)

Y, 4.0 5.0 6.0 7.0
D + +
CD + + +
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Table 2. Stability predictions for unit concentrated combustion (Q-Ax-1),CD, e-01
Y, - 00,1 -00)

Y, A 0.2 0.4 0.5 0.6 0.8
2.0 + + + + +
4.0 + + + + +
4.5 + - + - +
5.0 + - - - +
5.5 + - - - +
6.0 + - - - +
8.0 - - - - -

Table 3. Stability predictions for unit concentrated combustion (Q-Ax-4),D, e-01,
Y, =00, t -00)

Y, X 0.2 0.4 0.5 0.6 0.8
2.0 + + + + +
4.0 + - + - +
4.5 + - + - +
5.0 + - + - +
5.5 + - + - -
6.0 = - + - +
8.0 - - + - +
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