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Abstract

Wave propagation was studied for an unidirectionally

reinforced composite materials. The velocities, the particle

directions and the amplitudes of reflected and transmitted waves

were obtained. This analysis involves an immersion C-scan

procedure. Snell’s law was modified to get the velocities of waves.

This analysis could be applied to the detection of flaws in a

transversely isotropic composite motor case.

1. Introduction
Some motor cases were made by
composite materials using filament
winding technique. Due to the complexity
of manufacturing, flaws were found.
Those flaws could be bigger and finally
become critical cites to failure. Ultrasonic
nondestructive testing works well for
defects.
fiber
orientation, segregation of reinforcing
fibers are difficult to identify with

conventional data analysis procedures.

detecting gross composites

Porosity, local variation in

Since defects such as these will

principally affect the local modul,

ultrasonic velocity measurements are

quite useful in analyzing these types of

)

problems”. The ultrasonic tests are

required to  examine  directional

dependence of the properties by

measuring all pertinent elastic moduli.
The ultrasonic tests were used to
completely characterize all five elastic
moduli  for

transversely  isotropic

materials and all nine elastic moduli of
orthotropic materials®™®.

Previous investigators used contact
transducers at normal incidence. These
approaches are not

suitable for the scanning of large
parts due to the difficulties of maintaining
shear coupling as the transducer is
scanned. Immersion transducer with
mode conversion to generate the required
waves is another alternative approach.
Unfortunately, the

approach to the generation of waves in an

mode conversion
anisotropic media is significantly more
complicated than the isotropic case. Since

the generated waves do not have their
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normal along symmetry axes, they will
not usually be pure mode waves but
rather quasilongitudinal or
quasitransverse waves. Furthermore, as
has been observed many times in

anisotropic media, the energy flux
associated with wave propagation will
often deviate from the wave normal
complicating the problem considerably. A
further problem stems from the variation
in wave speed with propagation direction
in the composite and the associated
problem with determining the angle of
refraction via Snell’s law.

The principal objective of this work
was to develop a simplified method for
analyzing reflection-refraction

phenomena in transversely isotropic
materials for arbitrary angles of incidence.
Ideally, a method was sought which was
rapid, accurate and sufficiently compact
to be implemented on a laboratory
microcomputer so that it would be useful
for the detection of flaws of transversely

isotropic composite motor case.

2. Governing Equation
First, it is useful to review the
equation of motion and the constitutive

equation. The equation of motion is

o, +pb = pui (1)

where, o =stress u = displacement

p = density b = body force.

The constitutive equation is

Oy = Ciwbu (2)
where, ¢ = the stiffness matrix
g = strain.
and the strain and displacement
relationship is
1
£ :E(u,.,+uj_,) A3).

Substituting equations (2) and (3)
into equation (1) without body force
gives the following equation

pUir =Culy 4 4

The displacement may be represented as

(Kl x;-oot)

®)

u, = Aae
where, k = wave number
1 = wave normal vector
o = frequency
A= amplitude

o = polarization vector

Substituting equation (5) into equation

(4) gives

- pw°U; = Cyy (= K21, )y (6)

Rearranging equation (6) gives the

governing equation as
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(/:1— % 0(3 =0 7 k= lﬂ = wave number

7 = wave normal.
where, 1= identity matrix
v = velocity The slowness surface represents the locus
A = Cal i) of the endpoints of the slowness vectors.

For anisotropic media, there are three

3. Application to orthotropic medium distinct sheets of arbitrary shape. The
The wave normal for the refracted shape of slowness surface is an important
waves in the orthotropic media is factor in determining the nature of
reflected and refracted waves in

cos @’ anisotropic media.
7 =10 The problem under consideration
sing’ consists of a plane longitudinal wave in

water incident upon the boundary of a

) unidirectional composite panel.
Once the wave normal vector is found, P P

2 can be evaluated as For the cases to be studied, the

wave vector for the incident wave lies in

c,cos § +,sirt § 0 G, sing cosé +¢,sind cosd
A= 0 G008 8 +¢, sif 0 ®)
G, sind cosd +c,sind cosd 0 G 00s* 0 +c,sirt §

In solving the eigenvalue problem, the a plane either parallel or perpendicular to

directional cosines of the refracted wave

can not be determined from Snell’s law

1 Transducer l—_lTransducer

because of the directional dependence of
the wave velocities. Inddent, Angle water

Defining the slowness vector as

~ 1= 1~ \ // —

m= —"k = —‘/ \ / CCu;yGSﬁe—

@ v \V4
Q Q

—

h Kk = = |kl ) )
Where, wave vector |k |/ Fig.1 Experimental Arrangement
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With this geometry, the incident wave
may be represented as

U/n - Zelb‘”(m,‘("xk-[)
Similarly, the reflected longitudinal wave
may be represented as

" (mEx,~t)

Ure = Aree

For the transmitted waves, we have

T = Ze/mi(m,’;xk-t)
= A

where, the superscript i is used to
differentiate between the transmitted
work. In order to satisfy the boundary
conditions at the interface, the
frequencies of all waves must be equal,

ie.

and
MXy = MEX, = MX, ®

which is equivalent to

a; = ey 'V, = EyIMV, = E5MV,
where,

Vv =normal to interface

a = constant vector quantity.
In the case that

<]
I
o o =
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and,
cosd”
/77"/'/7 = _1_ O
Vo | .
sin@”
—cos@’®
i
v
"|sing®
, cos @’
m =—1|0
v .
" sin @’

where, the negative sign in the
slowness vector of the reflected
wave is included to indicate that it
is propagating away from the
interface, then we have the Snell’s
law as

sin@” _sin@” _siné’
V v v,

w w /

(10)
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Fig.2 Coordinate System



4. Eigenvalue Problem
We can rewrite the Snell’s law as

Ve
sing’ = —Lsing” = Kv,
v

w

for each mode, then equation (8)

quasitransverse (QT) wave propagation
have been determined, it is possible to
calculate the energy flux vector for each
Unlike the

propagation along a symmetry axis, the

mode of propagation.

energy flux vector for wave propagation

in an arbitrary direction does not coincide

becomes as with the wave normal.
_ ‘ -
G 1A, P+ (ki P-puf 0 (G, +a5 N1-(K¥, PIE K,
0 %[1—(/(1/,. )2]+c44 A 0 =0
1
| (Gyra - T 0 Gl 1=K ¥+ (1 Y|

Since the pure mode shear wave could
not be excited in the experimental
arrangement, we restrict attention to the
characteristic equation of remaining two

waves as

The energy flux vector is given by

[—— (11)

/ i

Hence, calculation of the eigenvectors for

<{cﬂ[1— (K, ]+ ss (Y, = i, o[ 1= (KY, ]+ cg (K7, o v }>

—(C, + g VUKV, )2[1_(Kv, )2] =0

This is a simple equation for v? which

may be solved numerically for the two

real roots.

S. Energy Flux Deviation
Once the velocities associated with
quasilongitudinal(QL) and

each mode is required. Then the particle

displacements become as

U = aAe—/’[mt~k(cos€tx+sin9*z)] (12)
i T M

The stresses are then determined from the

linearly elastic constitutive equation for
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the composite. For an orthotropic
medium, the directional cosines for the

energy flux vector then become

(_E_L\
. |H
—=-0 (13)
G

LEL)

Using equations (2) and (12), we can
evaluate equation (13) as

E, =c,af cosf + (¢ + Css )y, SING

+ G502 COSH

E, = Cyzalsin@ + c,ya,a,c080

2 .
+ Cssa, SINO + C @, COSH
and |E|:,/E12+E§.

6. Amplitude considerations
The particle displacements for the

incident wave are represented as

cos@”
U/'n = ’4) O
sing”

e/’k’ [cos 8" x+sin8"z-wt}

Similarly, the particle displacements for

the reflected wave are

—-cos@”
—_— ! T Cl CI
Ure — A, 0 e/k[ cos&°x+sind®z-awt]

sin@®

For wave propagation in the composite,

similar expressions for the generated

quasilongitudinal and quasitransverse
waves are
aL
@,
~ kg [cos 8 x+sing” z- ot ]
Uy = A0 |7
oL L
oL
a,
ar
@,
—~ iKgr lcos & x+sing” z-wt )
Ugr = Aor| O e
ar r
or
a3

Here, the eigenvectors @< and a@ ¥’

are perpendicular to one another, but in

general GO T 2 and
@? *79 %0. Therefore they are
called as  quasilongitudinal  and

quasitransverse waves. Three boundary
conditions at the fluid solid interface are
required to calculate the reflection and

transmission coefficients at the interface.
(1) Continuity of Normal Displacement

u

water |,_q

=Uu

composite|, _q

which leads to an expression of Snell’s
law for the composite as before as well as

the relationship

A cos@” — Acosd® = Aya,” + Agay
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(2) Continuity of Normal Stress

0—11(wa{er) _ = GH(compos/!e) _
x=0 x=0

which becomes as

ﬁk,[(oos,2 0" +sirf 0’”)4) +(<3c>s,2 g° +sirf HE)A,]

= Cn[/lzxanaka cosé” +Ayar” ko COS gor]
+q3[41a§"ka sin* + Ao kr sine"’]
(3) Zero Transverse Stress

Since the fluid can not support a shear
stress,

gl:!(water) x=0 =0= 0-13(composi[e) =0

which becomes as

k., (a® sing? + ¢ cos@% )+
LMoL 1 a3
Aorkor (a7 sin@”" +a cos67 ) =0

Those yields three equations in three
unknowns which can be solved for the

reflection and transmission coefficients.

7. Results and Consideration

T300 Carbon Fiber / 5208 Epoxy
composite was studied for wave
propagation at oblique angles incidence.

The stiffness coefficients are as

[11.2 5 71 0 0 O]
5 112 71 0 0 O
~_{71 71158 0 0 0
0 0O 0 71 0 0
0 0 0 0 71 0
0 O 0 0 0 3.

g
cm

and the density p =1.8

3 -

The oblique incident beam was projected

to a unidirectionally reinforced

composite in the reinforcement plane

parallel and perpendicular to the fiber axis.

A) x-y plane (isotropic plane)
(1) longitudinal wave slowness radius:

1

. , A =—=_[£ =0.4mm

Rearranging the above three expressions v, o
gives in matrix form as

cosd o a’ Aol A, cosé,,

0 Cpp Vo (ag” cosb,, +a siné,,) Ao 1A, b =40
ar oT o
—WaVor Cp CyVo (Cyay’ €08y +Cipag” sind,,) Aor 1 A, AVolVor

c22=Vv,, (i cosé,, +a’ sing,, ) (2) SV slowness radius:

= 1
c32 Rgy = —= -2~ =0.5mm

QL QL
CyVor (i cos @, +c a8 sing,,)

Vs, Cius
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(3) SH slowness radius:

Ry, =+ = | L =0.76mm
VS C66

/

N

»

S

where,
_ 2 HoY
M =c,,cos” 8 +c,,8in“ 6 +c,,

N=(g,co’ 6+, sirt 6)(c, 008" 8+¢,, Sirt 6)
—(g,+¢, Fsirf 6cos? 0

So, according to incident angle (8), the
slowness surfaces are obtained.

wat

Fig.3 Slowness surface (normal to
fiber)
B) x-z plane
(1) S-H wave
A (6)=— = p
S Vey \CuySIN?0+cCyucO82 0

x10°mm

_\/ 1.8
7.1sin? @+ 3.1cos? @

(2) quasilongitudinal velocity(vq) and

quasitransverse velocity(vqr)

HOL(9>:L:\/ 2P
Voo M +AM? —4N

Fig. 4 Slowness surface (parallel to

fiber)

8. Conclusions
Wave
transversely

propagation features in
isotropic materials were
evaluated for a microcomputer based
technique. Using oblique angles of
incidence, important information about
laminate properties could be obtained.

This approach may be used in a scanning
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mode to detect local flaws of a big

composite motor case if the shell effect

does not play an important role.
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