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Abstract

This paper examines the relation between
multidimensional linear interpolation ( MDI )
and regularization networks, and shows that
an MDI is a special form of regularization
networks. For this purpose we propose a
triangular basis function ( TBF ) network.
Also we verified the condition when our
proposed TBF becomes a well-known radial
basis function ( RBF ).

l. Introduction

The training process of a neural network
may be viewed as one of curve fittingll, p.
855]. Interpolation technique is used in the
application of signal processing [2], fuzzy
learning [3] and so on. Multidimensional
linear interpolation ( MDI ) is a useful
method for nonlinear function problem. One
of applications of this method is the
estimation of the pump output of artificial
heart, and showed good performance [4).
Recently, Om et al showed that MDI is a
special form of Tsukamoto’s fuzzy reasoning
(5. In the other view point, this paper
examines the relation between MDI and
regularization networks, and shows that an
MDI is a special form of regularization
networks. For this purpose we proposed
triangular basis function networks. Also we
verified when our proposed triangular basis

function ( TBF ) becomes a well-known
radial basis function ( RBF ).

This paper is organized as follows. We
state an MDI and regularization networks in
section II and 111, respectively. In section IV,
we derive the MDI from the proposed
triangular basis function network. In section
V, we summarize and discuss about our
study. Finally, in section VI, conclusions are
stated.

li. Multidimensional Linear Interpolation

- . Before we proceed, it is necessary to
«comprehend that what we mean the MDI is
the problem of interpolating on a mesh that
is Cartesian, ie, has not tabulated function
values at ‘random’ points in n-dimensional
space rather than at the vertices of a
rectangular array. This rectangular data array
will be called a look-up table ( LUT ) from
now, and what we say LUT is rectangular
data amray throughout this paper. For
simplicity, we consider only the case of three
dimensions, the cases of two and four or
more dimensions being analogous in every
way. If the input variable amrays are xi 1,
xal 1, and xu[ 1, the output y ( x, x2 x3 )
has following relation [6].

vl ml n]l 7} = A xial md, xa0l m], 23, #1)
)
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The goal is to estimate, by interpolation,
the function y at some untabulated point ( xi,
x2, x3 ). If x1, x2, x3 satisfy

2l m] < 2 < 2 mAl )
Tl # ] S, < xp[ 41 ] (2
Xl 7 1 € 23 < 23,0 741 ], '

the grid points are

=vm I n ITr 1
v =3[ m  WAan I r+l],
v3 = Yl m N+l r 1,
yo=vm N+l ] r+1 ].(3)
s =v[m+1ln Nr 1
¥ = Y[ m+1 ) n N r+11,
vy =v[m+l A n+l1 ) »r ],
vg = v [ m+1 A n+1 1 »r+1 ]

The final 3~dimensional linear interpolation is

Y(xl.XZ,X3)-
QA - (1 = vl - wy
+ (1 — (1 — vX W)y,
+ (1 — uX (1 — wy; )
+ (1 ~ u)( v)( W)y, @
+ ( w(l — o)1 — wys
+ ( w(l — o)X w)ys
+ ( 2)( (1 — wy;
+ ( 1)( v)( w)ys,
where
_ X = X1, m]
u = xlaIM+1]_xla[m] '
Xy~ Xg4{ 7]
v = X0l 712+ l]z—xza[”] ’ ®
w = X3— X34l 7]

x3a[ r+l]—x3a[r] °
( u, v, and w each lie between 0 and 1.)
We can see the estimated y uses 2" table

terms if n-dimensions, and it satisfies 8
terms in the case of three dimensions as

above.
lil. Trianguiar Basis Function Network

In this section, we will state radial basis
function ( RBF ) networks, regularization
networks, and the proposed triangular basis
function ( TBF ) networks. Typical RBF
networks and regularization networks are
shown in Fig. 1.

layer layer layer

(b
Fig. 1. (a) Radial basis function networks,
(b) regularization networks. ( From [l11, p.
256, 260. )

3.1 RBF Networks

RBF networks were originally proposed as
an interpolation method, and their properties
as interpolants have been extensively studied
[71 It is now one of the main fields of
research in numerical analysis. RBF networks



have been shown to have universal
approximation ability by Hartma et al [8]
and Park and Sandberg [9][10]. The radial
basis function ( RBF ) technique consists of
choosing a function F that has the following
form [12};

RO = 3 wiell X~ Cil) +wy ©

where {e(IX-CiDli = 1,2, .., N }is a set
of N arbitrary ( generally nonlinear )
functions, known as radial basis function, and
Il Il denotes a norm that is usually taken to
be Euclidean. The known data points C: €

R, i =12 ., N are taken to be the
centers of the radial basis function.
Theoretical investigations and  practical

results, however, seem to show that the type
of nonlinearity ¢(+) is not crucial to the
performance of RBF networks [12]. Some of

¢(+) are listed in the followings
(131014}(15]1(16].
1. Linear

olr) = », for ¥=0. )
2. Cubic

o(v) = »*,  for »=0. @®
3. Thin-plate-spline function

¢(7’) = (‘g)zln(—g), (9)

for some ¢>0, and r=0.
4. Gaussian function

2
o(r) = exp(—?‘—z).
for some ¢>0, and r=0.
5. Multiquadrics

or) = VA+E,
for some ¢>0, and »=0.
6. Inverse multiquadrics

for some ¢>0, and »20.

(10)

(n

(12)

Property 1 ( Factorizable Radial Basis
Function ) : For a radial basis function ¢
we have

° regularization
¢ expansion

(Il X~ C|IH

= (D(le - 01|2)¢(|x2— Cz|2). . .‘P('XN* Cle)
(13)

The synthesis of radial basis functions in
many dimensions may be easier if they are
factorizable. It can be easily proven that the
only radial basis function which is
factorizable is the Gaussian, A
multidimensional Gaussian function can be

represented as the product of lower
dimensional Gaussians. Aside the
implementation point of view, since it is
difficult to imagine how neurons could

compute GUIX-CI®) in a simple way for
dimensions higher than two [17].

3.2 Regularization Networks
The principle of regularization is :

Find the function F(X) that minimizes the
cost functional E(F), defined by
E(F) = EJF)+AE(F) (14
where Es(F) is the standard error term,
EAF) is the regularization term, and 1 is
the regularization parameter (11, p. 247].

We may state that the solution to the
problem is given by the

F(X)= ﬁ:wiG(X ;CH (19

i=1
where G(X ; C) is the Green's function. For
detail illustration of regularization problem
and Green's function, see [11){17). The RBF
is a restricted version of the regularization
function. The condition for this s
translational and rotational invariance.

wTranslational invariance The Green's
* function G(X ; C) centered at C; will
depend only on the difference between the
argument X and C; ; that is
GX:,C)=GX - C).

nTranslational and rotational invariance :
The Green's function G(X . C)) centered
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at C; will depend only on the Euclidean
norm of X and C: ; that is
GX; C)=aGl X - C 1D

Under these conditions, the Green’s function
network must be a radial-basis function
network as follow.

nx>=,§;wfc(||x —cly.  ue

It is important, however, to realize that this
solution differs from that of Eq. (6) in a
fundamental respect The solution of
definition given in Eq. (16) for the weight
vector w. [t is only when we set the
regularization parameter A equal to zero that
the two solutions may become one and the
same except wo [11].

33 Function

Triangular Basis
Networks

Proposed TBF networks are one kind of

regularization networks. So the structure of

TBF networks are equal to that of

regularization networks.

'A()’<71,72))
1

-7 0 7 7

Fig. 3. Triangular basis function A(rcn o).

Definition 1 (Triangular Basis Function )

A(X ; C) EA( (X— C) (rl.r2>)

= kljl( (Xk—Ck) <:1K.mogl7)

where

ml—, for —zI<r<0,

rl
—X for 0<r< z’2§18)
2

0, for otherwise.
and P is the dimension of input space. See
Fig. 3 for graphical illustration. Then the
TBF network is

:iw <rl.e>2 (19)

= lg w,'( ‘li( (Xk—=Ck) 1k ..

Egs (17) and (18) state the followings.

8 Proposed TBF can be calculated only
by factorized form if the input space is
multidimensional.

m Proposed triangular basis function holds
only the property of translation
invariance.

m If the interval of each dimensional data
of LUT is constant ( 71 = r2 ;
rotational invariance ), triangular basis
function becomes radial basis function.

/1(”<r1.m) =

IV. Expression of Multidimensional

Linear Interpolation from
Triangular Basis Function
Network
From Eq. (18)
A x—1) ¢e1.e05)
x;;l-_i-_r_l_' for — rl<x—t<0,
= 1——"——;2—‘, for 0<x—t< 12,
0, for otherwise, (20)
’;—:8:—;11)1, for —r<x—1t<0,
={y__._x-t _
1 e for 0<x—1t< 2,
0, for otherwise.

We can easily verify that this is equal to
{(w},0-u)} or {(W}{1-v)} or {(w},(1-w)} of
Eq. (4). If we set w, C <tl, 12> to be
value, position, and distances between C and
nearby C, respectively, the output of TBF
network is equal to Eq. (4) for three
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dimension, i.e, in Eq (20) w; is corresponding
to yi, and {(u} or (1-wWH} or (1-v)}{(w} or
(1-w)} to MX-Oniezy) = Nxka w
{(Xk-Cr)<tiknr>) for three dimensions. We
can also verify that the cases of n-dimension
( one, two, four or more ) in an MDI
produce the same  results of the
corresponding TBF network.

V. Discussion

We showed an interesting result in this
paper, which multidimensional linear
interpolation ( MDI ) is a special form of
regularization networks, If we use the
followings in regularization network, the
result is equal to that of an MDL

@® Kemnel in hidden layer of regularization
network :@ triangular basis function as
discussed in section 3.3.

® w : value in an LUT.

® C : position in an LUT.

@ <11, 12> : distances between C and
nearby C.

At this point, we need to compare both
methods. Even if we can get the same
output, an MDI is efficient than regularization
networks because the former uses valid data
whereas the later calculate all possible basis
functions even if they produce zero value. So
even if we can get the same output, the MDI
is efficient than regularization network in the
perspective of operation cost. But, in. TBF
network we have flexibility of making
nonlinear interpolated output simply by
setting a new strategy for <71, 12> and w.

VI Conclusion

It is known that multidimensional linear
interpolation is a special form  of
Tsukamoto's fuzzy reasoning [5]. In the
other view point, we showed that an MDI is
a special form of regularization networks in

this paper. For this purpose we proposed a
triangular basis function ( TBF ) network.
Also we verified the condition when our
proposed TBF becomes a well-known radial
basis function. We compared both MDI and
triangular basis function network in section
V. Further researches are necessary to find

the relation between MDI of tabulated
function values at ‘random’ points in
n-dimensional space and triangular basis

function network.
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