On t-Fuzzy Equivalence Relations

Gil Seob Rhie¹⁾, Yeoul Ouk Sung²⁾

I. Introduction.

Since the definition of a fuzzy relation from X to Y was introduced, as a fuzzy subset of $X \times Y$, by Zadeh[6], the theory of fuzzy relations was developed by [3, 4, 5]. In [4], Nemitz has studied lattice-valued fuzzy relations assuming values from a Brouwerian lattice. In [5], Sidky defined the t-fuzzy partition on a set and studied its properties.

In this paper we define the notion of t-fuzzy relation on a set and proved some related properties.

II. Preliminaries

Let L denote a linear lattice with the universal bounds 0, 1 and $t \in L-\{0\}$ throughout this paper .

Definition 2.1. [5]. (1) Let X be a nonempty set and L be a lattice. An L-fuzzy subset A of X is defined to be a mapping $A: X \rightarrow L$. (2) Let $F(X) = \{A \mid A \text{ is an } L\text{-fuzzy subset of } X\}$.

Definition 2.2. [5] Let A be an L-fuzzy subset of X and $t \in L$. The subset $\overline{A}^t = \{x \in X \mid A(x) > t\}$ of X is called a strong t-level subset of X.

Definition 2.3. [5] Let X and Y be nonempty sets. A fuzzy relation from X to Y is defined to be an L-fuzzy subset of $X \times Y$.

Definition 2.4. [4] Let X be a nonempty set and $R \in F(X \times Y)$, R is called an L-valued fuzzy equivalence relation on X iff

(1) R is reflexive i.e, R(x, x) = 1, $\forall x \in X$.

¹⁾ Department of Mathematics, Hannam University, Taejon 300-791, Korea,

²⁾ Department of Mathematics Education, Kongju University, Kongju 314-701, Korea.

- (2) R is symmetric i.e, $R^{-1} = R$.
- (3) R is transitive i.e. $R \circ R \subseteq R$.

Definition 2.5. [5] Let X be a nonempty set. The class $P = \{Y_i \in P(X) \mid i \in I\}$ is called a t-fuzzy partition of X iff

- (1) for each $x \in X$, there is $Y_i \in P$ such that $Y_i(x) > t$.
- (2) for each $Y_i \in P$, there is $x \in X$ such that $Y_i(x) > t$.
- (3) if $i \neq j$, then $Y_i(x) \wedge Y_i(x) \leq t$, $\forall x \in X$.

III. Main Results

Definition 3.1. Let $R \in F(X \times X)$. R is called a t-fuzzy equivalence relation on X iff

- (1) R is t-reflexive i.e. R(x,x) > t, $\forall x \in X$.
- (2) $R^{-1} = R$
- (3) $R \circ R \subseteq R$.

Theoreme 3.2. Let $R \in F(X \times X)$ be a t-fuzzy equivalence relation on X. Then $\overline{R^i} = \{(x, y) \mid R(x, y) > t\}$ is an ordinary equivalence relation on X.

Proof. Firstly, for each $x \in X$, since R is t-reflexive, R(x,x) > t, and so $(x,x) \in \overline{R^t}$, which implies $\overline{R^t}$ is reflexive.

Secondly, let $(x,y) \in \overline{R^t}$. Then R(x,y) > t. Since R is symmetric, $R(y,x) = R^{-1}(x,y) > t$, and so $(y,x) \in \overline{R^t}$, which implies $\overline{R^t}$ is symmetric. Finally, let $(x,y) \in \overline{G^t}$, and $(y,z) \in \overline{R^t}$. Then R(x,y) > t and R(y,z) > t. By transitivity of R, R(x,z) > t, and so $(x,z) \in \overline{R^t}$, which implies $\overline{R^t}$ is transitive. Therefore, $\overline{R^t}$ is an ordinary equivalence relation on X.

Theorem 3.3. Let $R \in F(X \times X)$ is a t-fuzzy equivalence relation on X, and let $[x]_{\overline{R'}} = \{y \in X \mid R(x,y) > t\}, x \in X$

Then $\{[x]_{\overline{R}^t} \mid x \in X\}$ is an ordinary partition of X.

Proof. For each $x \in X$, since R is t-reflexive, R(x,x) > t and so $x \in [x]_{\overline{R}'}$, which implies $X \subseteq \bigcup_{x \in X} [x]_{\overline{R}'}$.

We claim that $[x]_{\overline{R'}} = [y]_{R'} \otimes [x]_{R'} \cap [y]_{\overline{R'}} \neq \emptyset$. Suppose that $[x]_{\overline{R'}} \cap [y]_{\overline{R'}} \neq \emptyset$,

then there exists $z \in X$ such that $z \in [x]_{\overrightarrow{R'}} \cap [y]_{\overrightarrow{R'}}$. This implies that R(x,z) > t and R(y,z) > t.

By transitivity of R, R(x,y) > t. If $z' \in [x]_{\overline{R}^t}$, then R(x,z') > t. Combining R(x,y) > t and R(z',x) > t, which implies R(z',y) > t, hence $[x]_{\overline{R}^t} \subseteq [y]_{\overline{R}^t}$. Similarly, interchanging the roles of x and y, we get that $[y]_{\overline{R}^t} \subseteq [x]_{\overline{R}^t}$. Therefore, $[x]_{\overline{R}^t} = [y]_{\overline{R}^t}$.

Definition 3.4. Let $R \in F(X \times X)$ be a t-fuzzy equivalence relation on X. For each $x \in X$, we define a fuzzy subset $P_{[x]_{\overline{p}}} \colon X \to I$ by

$$P_{[x]_{\overline{R}}}(z) = \begin{cases} \bigvee_{R(x,z) > t} R(x,z) & \text{if } z \in [x]_{\overline{R'}} \\ 0 & \text{if } z \notin [x]_{\overline{R'}} \end{cases}$$

Theorem 3.5. If $[x]_{\overline{R'}} \cap [y]_{\overline{R'}} \neq \emptyset$, then $P_{[x]_{\overline{R'}}}(z) = P_{[y]_{\overline{R'}}}(z)$, $z \in X$.

Proof. Let $y \in [x]_{\overrightarrow{R'}}$. We show that $P_{[x]_{\overrightarrow{R'}}}(z) = P_{[y]_{\overrightarrow{R'}}}(z)$, $z \in X$. If $z \in [x]_{\overrightarrow{R'}}$, then R(x,z) > t. By transivity of R, $z \in [y]_{\overrightarrow{R'}}$ which implies $P_{[x]_{\overrightarrow{R'}}}(z) = P_{[y]_{\overrightarrow{R'}}}(z)$. Otherwise, since $y \in [x]_{\overrightarrow{R'}}$, $z \notin [y]_{\overrightarrow{R'}}$, which implies $P_{[x]_{\overrightarrow{R'}}}(z) = 0 = P_{[y]_{\overrightarrow{R'}}}(z)$. Therefore, $P_{[x]_{\overrightarrow{R'}}}(z) = P_{[y]_{\overrightarrow{R'}}}(z)$ for all $z \in X$.

Theorem 3.6. $P = \{P_{[x]_{\overline{x}}} \mid x \in X\}$ is a t-fuzzy partition of X.

Proof. Firstly, for each $z \in X$, Since R is t-reflexive R(z,z) > t, which implies $P_{\{z\}_{\overline{F}}}(z) \ge R(z,z) > t$.

Secondly, for each $P_{[z]_{\overline{R}}} \in P$, we have $P_{[z]_{\overline{R}}}(z) > t$.

Finally, we show that $[x]_{\overline{R'}} \cap [y]_{\overline{R'}} = \emptyset$ implies $P_{[x]_{\overline{R'}}}(z) \wedge P_{[y]_{\overline{R'}}}(z) \leq t$, $z \in X$. If $z \in [x]_{\overline{R'}}$, since $\{[x]_{\overline{R'}} \mid x \in X\}$ is an ordinary partition of X, then $z \notin [y]_{\overline{R'}}$, and so $P_{[y]_{\overline{R'}}}(z) = 0$, which implies $P_{[x]_{\overline{R'}}}(z) \wedge P_{[z]_{\overline{R'}}}(z) = 0$. If $z \in [y]_{\overline{R'}}$, then $z \notin [x]_{\overline{R'}}$, and so $P_{[x]_{\overline{R'}}}(z) = 0$, which implies $P_{[x]_{\overline{R'}}}(z) \wedge P_{[y]_{\overline{R'}}}(z) = 0$. If $z \notin [x]_{\overline{R'}}$ and $z \notin [y]_{\overline{R'}}$, then $P_{[x]_{\overline{R'}}}(z) = 0 = P_{[y]_{\overline{R'}}}(z)$, and so $P_{[x]_{\overline{R'}}}(z) \wedge P_{[y]_{\overline{R'}}}(z) = 0$. In which case, we have $P_{[x]_{\overline{R'}}}(z) \wedge P_{[y]_{\overline{R'}}}(z) \leq t$ for all $z \in X$.

Theorem 3.7. Let $P = \{P_i \in F(X) \mid i \in I\}$ be a t-fuzzy partition of X. Then there exists the correspondent t-fuzzy equivalence relation on X.

Proof. Define a fuzzy subset
$$R: X \times X \to I$$
 by $R(x, y) = \bigvee_i P_i(x) \wedge P_i(y), (x, y) \in X \times X.$

We show that R is a t-fuzzy equivalence relation on X. Firstly, let $x \in X$. Since P is a t-fuzzy partition of X, there exists a $P_i \in P$ such that $P_i(x) > t$. This implies that $R(x,x) = \bigvee_i P_i(x) \wedge P_i(x) = \bigvee_i P_i(x) \geq P_i(x) > t$. Therefore, R is t-reflexive.

Secondly, by definition, R(x, y) = R(y, x).

Finally,
$$R \circ R(x, y) = \bigvee_{z \in X} R(x, z) \land R(z, y)$$

$$= \bigvee_{z \in X} (\bigvee_{i} (P_{i}(x) \land P_{i}(z)) \land \bigvee_{i} (P_{i}(z) \land P_{i}(y)))$$

$$\leq \bigvee_{z \in X} (\bigvee_{i} (P_{i}(x) \land P_{i}(z) \land P_{i}(y))$$

$$\leq \bigvee_{i} \bigvee_{z \in X} (P_{i}(x) \land P_{i}(y))$$

$$= \bigvee_{i} (P_{i}(x) \land P_{i}(y)) = R(x, y) \text{ for all } (x, y) \in X \times X.$$

Therefore, R is transitive. Consequently, R is a t-equivalence relation on X.

Theorem 3.8. Let R be a t-fuzzy equivalence relation on X and let t > s, $0 \le s < 1$. Then R is a s-fuzzy equivalence relation on X, and $P_t \subseteq P_s$, where $P_t = \{P_{[x]_{\overline{F}}} \mid x \in X\}$, $P_s = \{P_{[x]_{\overline{F}}} \mid x \in X\}$.

Proof. To show that R is a s-fuzzy equivalence relation on X, it suffices to show that R is s-reflexive. For each $x \in X$, since R is t-reflexive, R(x,x) > t, which implies R(x,x) > s. Therefore, R is s-reflexive. The rest is clear. If $y \in [x]_{\overline{R}^t}$, then R(x,y) > t. Since t > s, which implies R(x,y) > s and so $y \in [x]_{\overline{R}^t}$, therefore. $[x]_{\overline{R}^t} \subseteq [x]_{\overline{R}^t}$. Consequently, we have $P_t \subseteq P_s$.

REFERENCES

- 1. G. Birkhoff, Lattice theory, A. M. S. Providence, Rhode Ishand, 1967.
- 2. D. Dubois and H. Prade, Fuzzy Set and System-Theory and Applications (Academic Press, New York, 1980).
- 3. V. Murali, Fuzzy equivalence relations, Fuzzy Sets and Systems 30 (1989) 155-163
- 4. W. C Nemitz, Fuzzy relations and fuzzy functions, Fuzzy Sets and Systems 19 (1986) 177-191.
- 5. F. I. Sidky, t-fuzzy mapping, Fuzzy Sets and Systems 76 (1995) 387-393.
- L. A. Zadeh, Fazzy Sets, Inform and Control 8 (1965) 338-353.