SEMI-SEPARATION AXIOMS IN FUZZY TOPOLOGICAL SPACES ### JIN HAN PARK AND YONG BEOM PARK DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, DAEYEON-DONG, NAM-KU, PUSAN 608-737, KOREA #### ABSTRACT In this paper, certain fuzzy semi-separation axioms are studied in terms of the notions of quasi-coincidence, fuzzy semi-q-neighborhoods and fuzzy semi- θ -closure operators. Fuzzy semi- T_2 , fuzzy semi-Urysohn and fuzzy s-regular spaces are defined, and fuzzy spaces satisfying these axioms are characterized. ### 1. Introduction and preliminaries Using the concept of fuzzy set, Chang [2] first introduced fuzzy topological space (fts, for short). Subsequently many authors [1.5,6,9-12] continued the investigation of such spaces. The concepts of fuzzy semiopen and semiclosed sets were first introduced in a fts by Azad [1]. Using these concepts, Ghosh [4] introduced fuzzy semi- T_i spaces (i = 0, 1, 2) and studied these spaces under fuzzy semi-continuity. In this paper, we study certain fuzzy semi-separation axioms in terms of the notions of quasi-coincidence, fuzzy semi-q-neighborhoods and fuzzy semi- θ -closure operators. Fuzzy semi- T_2 , fuzzy semi-Urysohn and fuzzy s-regular spaces are defined, and fuzzy spaces satisfying these axioms are characterized. We now explain some concepts and notations to be used frequently in the sequel. Throughout this paper, by (X,τ) (or simply X) we mean a fuzzy topological space in Chang's [2] sense. A fuzzy point in X with support $x \in X$ and value α ($0 < \alpha \le 1$) is denoted by x_{α} . For a fuzzy set A in X, $\mathrm{Cl}(A)$, $\mathrm{Int}(A)$, 1-A and $(A)_0$ will respectively denote the closure, interior, complement and support of A. A fuzzy set A in X is said to be q-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1 [10]. It is known in [10] that $A \le B$ if and only if A and A = B are not q-coincident, denoted by AqB = A and A = B are not q-coincident, denoted A fuzzy set A in X is said to be a fuzzy semi-nbd [4] (fuzzy semi-q-nbd [4]) of x_{α} if there exists a fuzzy semiopen set U in X such that $x_{\alpha} \in U \leq A$ (resp. $x_{\alpha}qU \leq A$). The fuzzy semi-closure of a fuzzy set A in X, denoted by sCl(A), is the union of all fuzzy point x_{α} such that every fuzzy semi-q-nbd of x_{α} is q-coincident with A, equivalent sCl(A) is the intersection of all fuzzy semi-closed sets containing A [4]. A is fuzzy semi-closed if and only if A = sCl(A). The union of all fuzzy semi-open sets contained in fuzzy set A in X is called the fuzzy semi-interior of A, denoted by sInt(A). A fuzzy point x_{α} is said to be a fuzzy semi- θ -cluster point [11] of a fuzzy set A in X if the fuzzy semi-closure of every fuzzy semi-open semi-q-nbd of x_{α} is q-coincident with A. The union of all fuzzy semi- θ -cluster points of A is called the fuzzy semi- θ -closure of A is denoted $[A]_{s-\theta}$ [11]. A fuzzy set A is called fuzzy semi- θ -closed [10] if $A = [A]_{s-\theta}$, and complement of a fuzzy semi- θ -closed set is fuzzy semi- θ -open. Obviously, every fuzzy semi- θ -closed set is fuzzy semiclosed. For other definitions and results, not explained here, we refer to the standard papers [4,7,9,10]. **Lemma 1.1** [7]. If A is any fuzzy set and B is a fuzzy semiopen set in a fts X such that $A\bar{q}B$, then $sCl(A)\bar{q}B$. **Lemma 1.2** [7]. For a fuzzy semiopen set A in a fts X, $sCl(A) = [A]_{s-\theta}$. Lemma 1.3. For any fuzzy subset A in a fts X, $[A]_{s-\theta} = \bigwedge \{ [U]_{s-\theta} \mid U \text{ is fuzzy semiopen and } A \leq U \}.$ # 2. Fuzzy semi-T2 axioms **Definition 2.1 [4].** A fts X is said to be fuzzy G-semi-T₂ if for any two distinct fuzzy points x_{α} and y_{β} , the following conditions are satisfied: - (a) when $x \neq y$, x_{α} and y_{β} have fuzzy semiopen semi-nbds which are not q-coincident; - (b) when x = y and $\alpha < \beta$ (say), x_{α} has a fuzzy semiopen semi-nbd U and y_{β} has a fuzzy semiopen semi-q-nbd V such that $U \neq V$. **Definition 2.2.** A fts X is said to be fuzzy semi- T_2 if every fuzzy point is fuzzy semi- θ -closed. Theorem 2.3. A fts X is fuzzy semi- T_2 if and only if for any two distinct fuzzy points x_{α} and y_{β} : when $x \neq y$, there exist fuzzy semiopen sets U_1 , U_2 , V_1 and V_2 such that $x_{\alpha} \in U_1$. $y_{\beta}qV_1$, $U_1\bar{q}V_1$ and $x_{\alpha}qU_2$, $y_{\beta} \in V_2$, $U_2\bar{q}V_2$; when x = y and $\alpha < \beta$ (say), there exist fuzzy semiopen sets U and V such that $x_{\alpha} \in U$, $x_{\beta}qV$ and $U\bar{q}V$. **Theorem 2.4.** A fts X is fuzzy semi-T₂ if and only if for every fuzzy point x_{α} , $x_{\alpha} = \bigwedge \{sCl(U) \mid U \text{ is fuzzy semiopen semi-nbd of } x_{\alpha} \}$. In the first case (when $x \neq y$) of necessary part of the Theorem 2.3, fuzzy semiopen semi-nbd can be replaced by fuzzy semiopen semi-q-nbd. **Theorem 2.5.** If a fts X is fuzzy semi- T_2 , then for every two distinct fuzzy points x_{α} and y_{β} in X: when $x \neq y$, x_{α} and y_{β} have fuzzy semiopen semi-q-nbds U and V respectively such that $U\bar{q}V$; when x = y and $\alpha < \beta$ (say), x_{α} has a fuzzy semiopen semi-nbd U and y_{β} has a fuzzy semiopen semi-q-nbd V such that $U\bar{q}V$. As a partial converse of the above theorem we have the following: Theorem 2.6. If in a fts X, the necessary condition of the above Theorem 2.5 hold, then every fuzzy point x_{α} ($\alpha \leq \frac{1}{2}$) is fuzzy semi- θ -closed, and $x_{\beta} \notin [x_{\alpha}]_{s-\theta}$ if $\beta > \alpha$, for any $\alpha \in (0,1)$. Theorem 2.7. A necessary condition for a fts X to be fuzzy semi- T_2 is that for any fuzzy set A in X, $A = A^*$, where $A^* = \bigvee \{x_{\alpha} \mid \text{there exists } y \in ([x_{\alpha}]_{s-\theta})_0 \text{ such that } ([x_{\alpha}]_{s-\theta})(y) \leq A(y)\}$. Remark. The converse of the above theorem is true if it would so happen that for two fuzzy points x_{α} and y_{β} , $x_{\alpha} \in [y_{\beta}]_{s,\theta}$ if and only if $y_{\beta} \in [x_{\alpha}]_{s,\theta}$. But we observe that this is not true (see Example 2.8). Nevertheless, it is true that if for every fuzzy point x_{α} in X, $x_{\alpha} = (x_{\alpha})^*$, then for any fuzzy point y_{β} , $$y_{\beta} \notin [y_{\alpha}]_{s-\theta}$$ if $\beta > \alpha$. In fact, since $y_{\alpha} \in (y_{\alpha})^* = y_{\alpha}$, there exists $z \in ([y_{\alpha}]_{s-\theta})_0$ such that $([y_{\alpha}]_{s-\theta})(z) \leq (y_{\alpha})(z)$. Then z = y so that $([y_{\alpha}]_{s-\theta})(y) = \alpha$. **Example 2.8.** Let $X = \{a, b\}$. Consider the fuzzy topology $\tau = \{1_X, 0_X, A\}$, where $A(a) = \frac{1}{3}$ and A(b) = 0. Then 1_X , 0_X and C are fuzzy semiopen set in (X, τ) , where C is fuzzy set in X defined by $\frac{1}{3} \le C(a) \le \frac{2}{3}$ and $0 \le C(b) \le 1$. Now consider two fuzzy points $a_{\frac{1}{12}}$ and $b_{\frac{4}{5}}$. Then 1_X is only fuzzy semiopen semi-q-nbd of $a_{\frac{1}{12}}$. Hence $a_{\frac{1}{12}} \in [b_{\frac{4}{5}}]_{s-\theta}$. But we consider fuzzy set D defined by $D(a) = \frac{1}{3}$ and $D(b) = \frac{1}{4}$. Then D is fuzzy semiopen semi-q-nbd of $b_{\frac{4}{5}}$ and $a_{\frac{1}{12}} \bar{q} \operatorname{sCl}(D)$. Hence $b_{\frac{4}{5}} \notin [a_{\frac{1}{12}}]_{s-\theta}$. **Theorem 2.9.** A fts X is fuzzy G-semi- T_2 if and only if X is fuzzy semi- T_2 and for $x, y \in X$ with $x \neq y$, there exists a fuzzy semiopen semi-nbd U of x_{α} such that $y \notin (sCl(U))_0$. Theorem 2.10. If X is fuzzy semi- T_2 , then for any two distinct fuzzy points x_{α} and y_{β} with $x \neq y$ or else x = y and $\frac{1}{2} < \alpha < \beta$, there exist fuzzy semiopen sets U and V such that $x_{\alpha}qU$, $y_{\beta}qV$ and $U \wedge V \leq \frac{1}{2}$. The converse of above theorem is not true as following example shows. **Example 2.11.** Let X consist of a single point a and the fuzzy topology τ on X consist of all fuzzy sets such that $A(a) \leq \frac{1}{3}$ together with 1_X . Consider the fuzzy points $a \frac{\tau}{10}$ and $a \frac{s}{10}$. Then 1_X is the only fuzzy semiopen semi-nbd of $a \frac{\tau}{10}$ and thus there cannot exist a fuzzy semiopen semi-nbd U of $a \frac{\tau}{10}$ and a fuzzy semiopen semi-q-nbd V of $a \frac{s}{10}$ such that $U \bar{q} V$. Hence by Theorem 2.3, (X, τ) is not fuzzy semi- T_2 . But for any two fuzzy points a_α and a_β with $\frac{1}{2} < \alpha < \beta$, putting $U = V = a \frac{\tau}{2}$, then U and V are fuzzy semi-q-nbd of a_α and a_β respectively such that $U \wedge V \leq \frac{1}{2}$. In [4], Ghosh showed that a fts X is fuzzy semi- T_1 if and only if every fuzzy point in X is fuzzy semiclosed. Since every fuzzy semi- θ -closed set is fuzzy semiclosed, it follows that a fuzzy semi- T_2 space is fuzzy semi- T_1 . But the converse is not necessarily true is shown by the following example. **Example 2.12.** Let X be an infinite set. Suppose τ consists of 0_X and all those fuzzy sets in X whose complements have finite supports. Then (X,τ) is a fts. Clearly, (X,τ) is fuzzy semi- T_1 . But, for any fuzzy semiopen set U in X, U(x)=1 for all but finitely many points x of X. Thus any two non-null fuzzy semiopen sets in X are q-coincident. Hence (X,τ) is not semi- T_2 . **Definition 2.13** [7]. A fts X is said to be fuzzy s-regular if for each fuzzy point x_{α} in X and each fuzzy semiopen semi-q-nbd V of x_{α} , there exists a fuzzy semiopen semi-q-nbd U of x_{α} such that $sCl(U) \leq V$. ## **Theorem 2.14.** For a fts X the following are equivalent: - (a) X is fuzzy s-regular. - (b) For each fuzzy point x_{α} in X and each fuzzy semiclosed set F with $x_{\alpha} \notin F$, there exists a fuzzy semiopen set U such that $x_{\alpha} \notin SCl(U)$ and $F \leq U$. - (c) For each fuzzy point x_{α} in X and each fuzzy semiclosed set F with $x_{\alpha} \notin F$, there exist fuzzy semiopen sets U and V such that $x_{\alpha} qU$, $F \leq V$ and $U\bar{q}V$. - (d) For each fuzzy set A and each fuzzy semiclosed set F with $A \not \leq F$, there exist fuzzy semiopen sets U and V such that AqU, $F \leq V$ and $U\bar{q}V$. - (e) For each fuzzy set A and each fuzzy semiopen set U with AqU, there exists a fuzzy semiopen set V such that $AqV \leq sCl(V) \leq U$. **Theorem 2.15.** A fts X is fuzzy s-regular if and only if $sCl(A) = [A]_{s-\theta}$ for each fuzzy set A in X. **Definition 2.16.** A fts X is said to be fuzzy semi-Urysohn if for any two distinct fuzzy points x_{α} and y_{β} in X: - (a) When $x \neq y$, there exist fuzzy semiopen sets U_1 , U_2 , V_1 and V_2 such that $x_{\alpha} \in U_1$, $y_{\beta} \neq V_1$ and $sCl(U_1)\bar{q}sCl(V_1)$, and $x_{\alpha}\neq U_2$, $y_{\beta} \in V_2$ and $sCl(U_2)\bar{q}sCl(V_2)$; - (b) When x = y and $\alpha < \beta$ (say), there exist two fuzzy semiopen sets U and V such that $x_{\alpha} \in U$, $y_{\beta} qV$ and $sCl(U)\bar{q}sCl(V)$. Every fuzzy semi-Urysohn space is fuzzy semi-T2. **Theorem 2.17.** A fts X is fuzzy semi-Urysohn if and only if for each fuzzy point x_{α} in X, $x_{\alpha} = (x_{\alpha})^{**}$, where $(x_{\alpha})^{**} = \bigwedge \{ [[U]_{s \cdot \theta}]_{s \cdot \theta} \mid x_{\alpha} \in U \text{ and } U \text{ is fuzzy semiopen} \}.$ **Theorem 2.18.** Every fuzzy s-regular and fuzzy semi- T_2 space is fuzzy semi-Urysohn. ## REFERENCES - K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14-32. - 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190. - S. Ganguly and S. Saha, On separation axioms and T_i-fuzzy continuity, Fuzzy Sets and Systems 16(1985) 265-275. - 4. B. Ghosh, Semi-continuous and semiclosed mappings and semi connectedness in fuzzy setting, Fuzzy Sets and Systems 35 (1990) 345-355. - 5. B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980) 93-104. - 6. G. Killibarda, Some separation axioms in fuzzy topological spaces, Mat. Vesnik 36 (1984) 271-284. - 7. S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy Sets and Systems 45 (1992) 239-244. - 8. M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990) 245-254. - J. H. Park, B. Y. Lee and J. R. Choi, Fuzzy θ-connectedness, Fuzzy Sets and Systems 59(1993) 237-244. - 10. P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599. - 11. S. P. Sinha, On S*-closedness in fuzzy setting (preprint). - 12. S. P. Sinha, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 45 (1992) 261-270. - 13. H. T. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 126 (1987) 409-423.