FUZZY r-SEMIOPEN SETS AND FUZZY r-SEMICONTINUOUS MAPS

EUN PYO LEE AND SEOK JONG LEE

Department of Mathematics, Seonam University, Namwon, Korea Department of Mathematics, Chungbuk National University, Cheongju, Korea

Introduction

As a generalization of a set, the concept of fuzzy set was introduced by Zadeh. Chang[2] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Some authors [4,5,6] introduced new definitions of fuzzy topology as a generalization of Chang's fuzzy topology. In this paper, we generalize the concepts of fuzzy semiopen and fuzzy semicontinuous of Azad[1]. We introduce the concepts of fuzzy r-semiopen(r-semiclosed) sets and fuzzy r-semicontinuous(r-open, r-closed) maps and then study some of their basic properties.

1. Preliminaries

DEFINITION 1.1. [2] A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If μ_i for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a Chang's fuzzy topological space.

DEFINITION 1.2. [4] A fuzzy topology on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$,
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$,
- (3) $\mathcal{T}(\bigvee \mu_i) \geq \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

DEFINITION 1.3. [3] Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy closure is defined by

$$\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X | \mu \le \rho, \mathcal{T}(\rho^c) \ge r \}.$$

From now on, for $r \in I_0$ we will call μ a fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$, μ a fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$ and $\operatorname{cl}(\mu, r)$ the fuzzy r-closure of μ .

2. Fuzzy interior operator

Now, we are going to define fuzzy interior operator in (X, \mathcal{T}) .

DEFINITION 2.1. Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-interior is defined as follows:

$$\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X | \mu \ge \rho, \mathcal{T}(\rho) \ge r \}.$$

Obviously, $\operatorname{int}(\mu, r) = \mu$ for any r-open set μ . Moreover, we have the following results.

PROPOSITION 2.2. Let (X, \mathcal{T}) be a fuzzy topological space and int: $I^X \times I_0 \to I^X$ the fuzzy interior operator in (X, \mathcal{T}) . Then for $\mu, \rho \in I^X$ and $r, s \in I_0$,

- (1) $\operatorname{int}(\tilde{0},r) = \tilde{0}, \operatorname{int}(\tilde{1},r) = \tilde{1}.$
- (2) $int(\mu, r) \leq \mu$.
- (3) $int(\mu, r) \ge int(\mu, s)$ if $r \le s$.
- (4) $\operatorname{int}(\mu \wedge \rho, r) = \operatorname{int}(\mu, r) \wedge \operatorname{int}(\rho, r)$.
- (5) $int(int(\mu, r), r) = int(\mu, r)$.
- (6) If $r = \bigvee \{s \in I_0 | \operatorname{int}(\mu, s) = \mu \}$, then $\operatorname{int}(\mu, r) = \mu$.

PROPOSITION 2.3. Let int: $I^X \times I_0 \to I^X$ be a map satisfying (1)-(4) of Proposition 2.2. Let $\mathcal{T}: I^X \to I$ be a map defined by

$$\mathcal{T}(\mu) = \bigvee \{r \in I_0 | \mathrm{int}(\mu, r) = \mu \}.$$

Then \mathcal{T} is a fuzzy topology on X such that.

$$int = int_{\tau}$$

iff (5) and (6) of Proposition 2.2 are satisfied by int.

If int: $I^X \times I_0 \to I^X$ is a fuzzy interior operator on X, then for each $r \in I_0$, int $_r: I^X \to I^X$ defined by

$$\mathrm{int}_r(\mu)=\mathrm{int}(\mu,r)$$

is a Chang's fuzzy interior on X.

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{ \mu \in I^X | \mathcal{T}(\mu) \geq r \}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

PROPOSITION 2.4. An operator int: $I^X \times I_0 \to I^X$ is a fuzzy interior for the fuzzy topological space (X, \mathcal{T}) if and only if $\operatorname{int}_r: I^X \to I^X$ is a Chang's fuzzy interior for the Chang's fuzzy topological space (X, \mathcal{T}_r) for all $r \in I_0$.

3. Fuzzy r-semiopen sets

DEFINITION 3.1. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that int $(\rho, r) \le \mu \le \rho$.

THEOREM 3.2. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then the following statements are equivalent:

- (1) μ is a fuzzy r-semiopen set.
- (2) μ^c is a fuzzy r-semiclosed set.
- (3) $\operatorname{cl}(\operatorname{int}(\mu, r), r) \geq \mu$.
- (4) $\operatorname{int}(\operatorname{cl}(\mu^c, r), r) \leq \mu^c$.

THEOREM 3.3. (1) Any union of fuzzy r-semiopen sets is fuzzy r-semiopen.

(2) Any intersection of fuzzy r-semiclosed sets is fuzzy r-semiclosed.

DEFINITION 3.4. Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy semi-closure is defined by

$$scl(\mu, r) = \bigwedge \{ \rho \in I^X | \mu \le \rho, \ \rho \text{ is fuzzy } r\text{-semiclosed} \}$$

and the fuzzy semi-interior is defined by

$$\operatorname{sint}(\mu, r) = \bigvee \{ \rho \in I^X | \mu \ge \rho, \ \rho \text{ is fuzzy } r\text{-semiopen} \}.$$

Obviously $\mathrm{scl}(\mu, r)$ is the smallest fuzzy r-semiclosed set which contains μ and $\mathrm{sint}(\mu, r)$ is the greatest fuzzy r-semiopen set which contained in μ . Also we have $\mu \leq \mathrm{scl}(\mu, r) \leq \mathrm{cl}(\mu, r)$ and $\mu \geq \mathrm{sint}(\mu, r) \geq \mathrm{int}(\mu, r)$.

REMARK 3.5. It is obvious that every fuzzy r-open (r-closed) set is fuzzy r-semiopen (r-semiclosed). That the converse need not be true. It also shows that the intersection (union) of any two fuzzy r-semiopen (r-semiclosed) sets need not be fuzzy r-semiopen (r-semiclosed). Even the intersection (union) of a fuzzy r-semiopen (r-semiclosed) set with a fuzzy r-open (r-closed) set may fail to be fuzzy r-semiopen (r-semiclosed).

THEOREM 3.6. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy r-semiopen (r-semiclosed) in (X, \mathcal{T}) if and only if μ is fuzzy semiopen (semiclosed) set in (X, \mathcal{T}_r) .

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Recall that a fuzzy topology $T^r: I^X \to I$ is defined by $T^r(\mu) = 1$ if $\mu = \tilde{0}, \tilde{1}, r$ if $\mu \in T - \{\tilde{0}, \tilde{1}\}$ and 0 otherwise.

THEOREM 3.7. Let μ be a fuzzy set of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is fuzzy semiopen (semiclosed) in (X,T) if and only if μ is fuzzy r-semiopen (r-semiclosed) in (X,T^r) .

4. Fuzzy r-semicontinuous maps

DEFINITION 4.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y,
- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X,
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

DEFINITION 4.2. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-semicontinuous map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-open set μ of Y,
- (2) a fuzzy r-semiopen map if $f(\mu)$ is a fuzzy r-semiopen set of Y for each fuzzy r-open set μ of X,
- (3) a fuzzy r-semiclosed map if $f(\mu)$ is a fuzzy r-semiclosed set of Y for each fuzzy r-closed set μ of X.

REMARK 4.3. In view of Remark 3.5, a fuzzy r-continuous(r-open, r-closed) map is also a fuzzy r-semicontinuous(r-semiopen, r-semiclosed) map for each $r \in I_0$. That the converse need not be true.

THEOREM 4.4. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r \in I_0$. Then f is fuzzy r-semicontinuous(r-semiopen, r-semiclosed) if and only if $f:(X,\mathcal{T}_r) \to (Y,\mathcal{U}_r)$ is fuzzy semicontinuous (semiopen, semiclosed).

THEOREM 4.5. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to another Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy semicontinuous (semiopen, semiclosed) if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy r-semicontinuous (r-semiopen, r-semiclosed).

References

- 1. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 3. K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- 4. K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82.
- 6. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl 132 (1988), 356-364.