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1. Introduction

Rough sets proposed by Z. Pawlak in 1982
can be described as approximate inclusion
of sets. Rough sets concept can be applied
to automatic classification, pattern
recognition, learning algorithms, etc.
Especially, approximéte classification has
been developed and applied for medical
diagnosis [1].

[1] Z. Pawlak: Rough classification, Int. J.
Man-Machine Studies 20, 469-483, 1984



2. Rough Sets Concepts

An approximation space A is the ordered pair
A = (U, R) where U is the universe and R is an
indiscernibility (equivalence) relation. If (x,,x,) € R,
X, and x, are indiscernible in A. Equivalence classes
of the relation R are called elementary sets. Any
finite union of elementary sets in A is called a
definable sets in A.

UIR = {E,y....E s}
Fig.1 An approximation space A.
{E,....E ¢} are elementary sets.
The upper approximation of X:
A" X)={E|ENX#DY={E,,....E,}=E;U--UE,
(the least definable set containing X)
The lower approximation of X:
A(X)={E|EcX}={Ee,E,}=EVE,
(the greatest definable set contained X))
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3. Information Tables and Equivalenve Classes

Table 1. Information systems (Z. Pawlak)

Patient | Headache | Musclepain | Temperature | Flu
X, no yes high yes | q,(x)=0
X, yes no high yes | g,(x)=1
X, yes yes very high | yes
X, no yes very high | yes
Xs no yes normal no
X yes no high no | g,(x)=1
4
U q, q; B d,
X, 0 1 1
X, 1 0 1 normal: O
X, 1 1 2 | X high: 1
X, 0 1 2 very high: 2
X; 0 1 0
X 1 0 1 X,
U={X 150sesX 6} 0={q::99:} D={d,}

(the universe) (the set of attributes) (the sét of decisions)

q.: E\(q)={x 5% X s}, Ej(q,)={x,5x 5%}
g3t E(q)={x,x,5x s}, Ef(q)={x,x,}, Es(g5)={xs}

Q: E\(Q)={x,}, E,(Q)={x,,x:}, Es(Q)={x,}

E4(Q)={x4}9 Es(Q)={xs}

A *(X1)={E1(Q)9E3(Q)’E4(Q)}={x1’x3yx4}
A *(X2)={E5(Q) }={x5}

U/Q



4. Reduction and Decision Rules
Accuracy measure (the guality of the classification)

_ card(A (X))UA (X))
BQ) = card(U)

where card(U) is the number of elements in U.

BQ) =% =24
Q'={q19q3}: E1(Q')={x1}9 Ez(Q')={xz7x6}a Es(Q')={x3}
E(Q)={x,}, E(Q)={xs} --- U/IQ'=UIQ

BQ") =24 = B(Q), but Q'O
* g, is called superfluous in Q.
- 0 is said to be dependent iff there exists

Q'<Q such that B(Q") = B(Q).

43 AAX,)=E,(q)={x;x,}, A (X)=E(q,)={x;}

Blgs) = %6 =12 < Bg,q5)

q:: A(X,)=0, A.(X)=D
B =% =0<B({g.,95)
*{91,9,} is said to be independent in Q.

- O is said to be independent iff for every
Q'<Q, B(@" < B©). |

- If B(P') < B(P) = B(Q) for P'cPcQ, P is said
to be reduct of Q.

In the example, 0'={q,,q,} and Q"'={q,,q,} are
reducts of .




U 9, q; d,
Patient | Headache | Temperature Flu
X, no higu yes
X, yes high yes
X5 yes very high yes
X, no very high yes
X5 no normal no
X yes high no

Ulq,: E\(q)={x,5X15%4}s E;(q5)={x 35X}, Es(q3)={xs}
Uld: E\(d)={x5x55% 3% . }s E(d )={x5x ¢}

Reduction
of
Attributes

— E,(q,) cE,d)), E;(q;) c E,(d,)

Reduction

U 9, q; d,
Patient | Headache | Temperature Flu
X, no higu yes
X, yes high yes
X, — very high yes
X, - very high yes
Xs — normal no
Xg yes high no

(—: do not care)

Temprature, very high),
Temprature, normal),

Attributes

then (Flu, yes)
then (Flu, no)

Headache, yes) and (Temprature, high), then (Flu, yes)

if (
if (
if (Headache, no) and (Temprature, high), then (Flu, yes)
if (
if (

Headache, no) and (Temprature, high), then (Flu, no)



Let F ={X,,....X,} be a classification of U, i.e. XX, # O for
every i#j and U_ X=U. Then F is called a partition of U and
X, is called a class. An upper approximation and lower
approximation ofF can be written as:
A" (F)={A"(X) A (X,)}
AF)={A (X)) A LX)}
An accuracy measure of F in U is defined as:
BA(F)=card(JL,A.(X))/ card(U)

Definition 1:
i) Let P be a subset of Q. A subset P is said to be independent
if a nd only if

B.(P) <B.(P) forall P'cP.
Also, P is said to be dependent if and only if there is P'—P such
that BA(P") =B L(P).
i) Let P'cP and P" = P-P'. A subset P' is said to be
superfluous in P if and only if B.(P") =P .(P).

Algorithm

Step 0: Set P=0Q. |

Step 1: Find a superfluous attribute, say p,, in P. If there is
not such a p, go Step 4.

Step2: Set P=P-{p}.

Step 3. If all {p;} c P is not superfluous in P, go to Step 4.
Otherwise, go to Step 1.

Step 4. End. P is the reduct of the given attributes.



5. Reduction of Divisions of Attributes [2]

0 1 |2
5.0 10.0 13.0 15.0 attribute value
(Medical inspection)

A binary representation of {0,1,2}

0,1 2 Z Z,

5.0 13.0 15.0 0 0 0
0 1,2 1 0 1
50 10.0 15.0 2 1 1

Table 2 . An example of information system

U q, q. q; q,
X, 0 2 1 0
X, 0 1 2 1
X, 1 0 1 0
X, 1 0 1 0
X, 1 2 1 0
X, 1 2 0 0

Table 3. A binary representation of Table 2

q, q, qs q, Table 4. The reduction result
F | U
2y | %2 | &3 | % | %5 | % q, | g, | q,
x, |01} 1]0]1.0 x, | 0 2 | 1,2
x, | 00111111 x, | 0 [01]1.2
X | x,/1,0;0,0]1,0 x, | 1 /01|12
x, | 1107070, 1.0 x, | 1 ]01|12
xs | 111010 x, | 1]01]12
xg |1 ]1]1]0]j0]0 x. | 11010

[2] H. Tanaka, K. Koyama and Y. Maeda: A Method for Reducing
Information Systems with Binary Data by Rough Sets, Fifth IEEE Int.
Conference on Fuzzy Systems, September 1996
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6. Application [3]

In order to show that this reduction method in the
section 2 is useful, we applied our method to
medical data analysis for hepatic diseases.
These data consist of 5 classes.

Healthy person : X,

Hepatoma . &

Acute hepatics : X,

Chronic hepatics: X,

Liver cirrhosis : X,
The number of medical inspection is 20. The
integers of attribute values are given by medical
experts as shown in Table. A default value is
represented as 0 in the data. The given data from
Kawasaki Medical College are as follows:

U={x},i=1,..,468 ; 468 samples
0 =1{q,}, j =1,...,20 ; 20 medical inspections
F={X,},k=1,..,5 ;5classes

[3] H.Tanaka, H. Ishibuchi and N. Matsuda: Fuzzy
Expert System Based on Rough Sets and lIts
Application to Medical Diagnosis, Int. J. of General
Systems, Vol.21, pp.83-97, 1992



Examples of divisions of medical test data

Medical Integers of attribute values

inspection 1 2 3 4 5 6
q: SP ~5.5 5.6-6.5 6.6-7.5 7.6-8.5 8.6~ *kk
q, 11 ~4 5-6 7-9 10~ *kx *kx

qs ChE ~100 | 101-150 | 151-200 | 201-250 | 251-500 | 501~

d10 GPR ~25 26-100 101-200 | 201-500 | 501-1000 | 1001~

gic | Lympho | ~20.0| 20.1-40.0 | 40.1-60.0 | 60.1~ T * ok x

g | A1-% | ~25| 2.6-3.7 | 3.8-5.0 5.1~ kK ok

g | AFP | ~20 | 21-100 | 101-200 |201-1000| 1001~ | ***

Binary representation of 7 attributes

Attribute
Division g2 9160 919 91 920 99: 910
1 o o o|o0o o o0 0|0 ©O0 O O0 O
2 0 0 1 o o0 0 1 0o o0 o0 0 1
3 0o 1 1 0 0 11 0 o0 0 1 1
4 1 1 1 0o 1 1 1 0 o 1 1 1
5 1 1 1 1 0 1 1 1 1
6 1 1 1 1 1
First Step Second Step
1|2]3]a]5s] Attribute 1 [/t.[-2°] 3 | 4 | 5 |
12|34 Attribute 2 | 1 | 2 /3. )4
1|2 (3|45 6| Attributed | 1 | 2 | 3 [.4 | 5] 6%
1 23|45 |6 ]| awibute 10 | 1 | 2 £73 [ a|5][{11d]]
12|34 Attribute 16 | 1 | 2
1 2 {34 Attribute 19 1 2 &
12345 | Attribute 20 | 1 | 2 [73" 74 75/
Total number of divisions 34 Total number of divisions 25

Fig. 2. The reduction result by our method



7. Fuzzy if-then rules

From Table 1, we have the following consistent if-
then rules:

If x is g,=0 and g,=1, then x isd =1 (Flu).
If x is q;=2, thenx isd =1.
If x is ¢;=0, thenx isd,=0.

q,
d,=0 d,=
0| d=0 | d=1 | d=
0 1 2 qs

l
VAV

Fuzzy intervals by exponential functions



8. Similar concepts to Rough Sets

(1) Retrieval in incomplete information

Let us get started with an example of information retrieval in the
database of incomplete information shown in Table 5 where it is
assumed that the age of a person is exactly unknown, but given
by the interval of possible ages. It should be noted that intervals
are the simplest one among fuzzy numbers. In addition, we let the

age of the person being searched for the interval 0=[20,25].
Then, we have the incomplete information and also the incomplete
query. There are the limiting interval interpretation of the query Q
from the two viewpoints of possibility and necessity as follows [4]:

(i) The upper value of querr, A*(Q), which is the set

of objects from which the available information

could possibly satisfy the query Q [possibility].

(li) The lower value of querr, A.(Q), which is the set

of objects from which the available information can

not fail to satisfy the query Q [necessity].

Table 5. An example of database of incomplete information

Name Age
a X =[23,26]
b - X,=[20,22]
C - X.=[30,36]
d - X,=[20,23]
e - X=[2731] |

More specifically, (i) and (ii) can be transiated into the following
mathematical expressions, respectively:

AT(Q) = {il XNQ=D} = {ab.d} (possibility)
A(Q) ={il X;cQ} = {bd} (necessity)

[4] W. Lipski: On semantic issues connected to incomplete

information in databases, ACM Trans. on Database Systems,
4, 262-296, 1979



(2) A Mathematical Theory of Evidence [5]

[5] G. Shafer: Princeton Univ. Press, 1976

[6] A. P. Dempster: Upper and lower probabilities induced by
a multivalued mapping, Annals. of Math. Stat. 38, 2, 325-339,
1967

A basic probability assignment (a structure of evidence)
U m(A,)=0.3

m(A,) = 0.5
m(A,;)=0.1

m(U) =0.1
Total 1.0

The upper probability

PPX= X m(A)=05+0.1+0.1=0.7 (possibility)
ANXz0
The lower probability

P(X)= X m(A)=0.1 (necessity)
AcX

Example: The Ming Vase: | contemplete a vase
that has been represented as a product of the Ming
dynasty. Is it genuine or counterfeit?

0,: The vase is genuine, 0,: it is counterfeit
m({9,}) = 0.4, m({6,,0,}) = 0.6
P06, =0.4+0.6=1.0, P.(6,) =0.4



(3) Conditional Logic [7]

X

b— alb | >anb

alb = {x| xAb=arb}
= [anb, —bva]
anb c —bva
A.C A" (Rough Sets)

alb :ifx isb,theny isa. (conditional logic)

b—a : if x is b, then y is a. (Implication)
b—a =s2p{xlx/\bﬂl}
= —bva

[7] Conditional Logic in Expert Systems: Edited by
|. R. Goodman et al., North-Holland, 1991



(4) Interval Regression Analysis [8]

Given data: (Y, X)), j=1,....m, X;=(X;;,....X,)
Y;=Ax; ++A.x, (possibilitymodel)
Yij=Auxj + - + Ayx;, (necessity model)

A=(a, aw)
i) YV}, J =Za; x| > min: Possibility model
i) Y.,cY;, J.=Za. Ix;| - max : Necessity model

[8] H.tanaka, |. Hayashi and J. Watada: Neccesity
model regression analysis for fuzzy data, Europian
J. of Oper. Res., 40, 389-396, 1989

»
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Table 2. Feed speed and surface roughness

Roughness(y)y;
Feed speed z min. max. Roughness(u)Y;
No. (10 mm/min) value  value (vir€i)
1 1.0 019 0.29 . (0.240,0.050)
2 1.5 0.24 032  (0.280,0.035)
3 2.0 020 027  (0.235,0.035)
4 2.5 0.20 046  (0.330,0.130)
5 3.0 0.22 038  (0.300,0.080)
6 3.5 0.22 0.33 (0.275,0.055)
7 4.0 035 056  (0.455,0.105)
8 4.5 0.37 0.60 (0.485,0.115)
9 5.0 0.41 0.89 (0.650,0.240)




9. Concluding Remarks

1) Rough Sets concept is similar to Fuzzy Set
Concept.

2) Our Partial ignorance can be expressed by
intervals.

3) Knowledge acquisition will be obtained by
Rough Sets.

4) There are many research topics related to
Rough Sets Concepts such as Interval
Regression.



