Earthquake Response Analysis through a Fundamental Solution to Multilayered Half-Planes

다층반무한 기본해를 이용한 지진응답해석

  • Published : 1997.04.01

Abstract

The indirect boundary integral equation is formulated to analyze the behavior of a cavity in a multilayered half-plane subjected to earthquake waves. This formulation uses the fundamental solutions that are numerically calculated by the generalized transmission and reflection coefficient method. The free surface of the cavity without external excitation influences the behavior of the half-plane. Consequently this analysis adds the consideration of scattering-field into the analysis and the total motion field of the cavity is decomposed into the free-field and scattering-field motions. The free-field motion is obtained from the modification of the transmission and reflection coefficient method. The scattering-field motion is calculated is calculated by the indirect boundary value problem which has the ficticious boundaries and sources. In this study, P wave, SV wave, SH wave, and Rayleigh wave are analyzed respectively.

Keywords