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Abstract

In this study, we tried to test the classification performance of a neural network and thereby to examine its
applicability to the signais distorted by a shallow water environment. We conducted an acoustic experiment in
a shallow sea near Pohang, Korea in which water depth is about 60 m. The signals, on which the network has
been tested, is linear frequency modulated ones centered on one of the frequencies, 200, 400, 600 and 800
Hz, each being swept up or down with bandwidth 100 Hz. We considered two transforms, STFT (short-time
Fourier transform) and PWVD (pseudo Wigner-Ville distribution), from which power spectra were derived. The
training signals were simwlated using an acoustic model based on the Fourier synthesis scheme. When the
network has been trained on the measured signals of center frequency 600 Hz, it gave a little better results
than that trained on the simulated. With the center frequencies varied, the overall performance reached over
90 % except one case of center frequency 800 Hz. With the feature extraction techniques (STFT and PWVD)
varied, the network showed performance comparable to each other. In conclusion, the signals which have
been simulated with water depth were successfully applied to training a neural network, and the trained
network performed well in classifying the signals distorted by a sumounding environment and corrupted by

noise,

I. Introduction

Based on the presence or absence of features,
the sonar operator attempts to delemmine the
identity of the target. This classification task has
important military consequences because passive
sonar enables covert detection of unfriendly
vessels. However, the task is difficult to perform
requiring lengthy and often inlensive lraining. As
sensor technology develops and target becomes
increasingly sophisticated, this lask is becoming

more and more difficult due 10 increasing volume
and complexity of the data available for
processing. These have led to the urgent need for
increased computer assistance.

As the demand increases to address even
more complex problems,
the

are

such as pattern

recognition, limilations of conventional

approaches becoming increasingly
pronounced. tt is in this area that neural networks

promise a significant breakthrough [1].



This paper is direcled Lo test the performance
of a neural network based classifier on the
distorted signals in a shallow wates. The network
is trained on the signals simulated at 2 km using
a time-domain acoustic model. The experiment
has been conducted with a sound source emitting
LFM

transmitting  signals

four signals, and three receivers

to land sile via radio
frequency.

The network performance is delivered in
four LFM signals, two feature

relation to

extraction techniques, and tratning data sets.

It. Spectrum Estimatjon for Non-Stationary
Signals

2.1. Short-Time Founer Transform (STFT)

As feature vectors for the network, we employ
spectrograms, i.e., spectrum distribulion with time
and frequency. The spectrograms have been
especially important for speech processing and
[2-5). To
spectrograms, we consider two transforms: short-

for signal processing obtain
time Fourier ftransform (STFT) and pseudo
Wigner-Ville distribution (PWVD).

The most direct approach to compuling the
time history of the power spectrum is to view the
recorded data through a moving average window
whose length corresponds to the time over which
the data can be assumed to remain stationary.
The Fourier transform of the windowed data is
known as the STFT. The STFT of the given data

is defined as [6]
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The time histery of the spectrum comprises the
so called spectrogram (or lofargram in sonar
signat processing).

2.2. Pseudo Wigner-Ville Distribution (PWVD)

This is a kind of time-frequency distrbutions
and is known to be suitable for analyzing
transtent or olher non-stationary phenomena. Il
has been widely used in optics {7] and speech
processing (8).

The Wigner-Ville distribution (WVD) is defined
as (9]
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and discrete form as (10]
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For a sampled signal sfnf (n=0,1,2,.. ,N-1}, Eq.
(4} changes info
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k=0,1,2,...N-1
where s|[mj=0 for m<0 and m>N-1.
Basically, Eq.(5) has the form of the FFT and

&)

we can utilize a FFT algonthm. However, it has a
N/2 period so that even when the sampled dala
satisfies the Nyquist criterion, there would be slill
aliasing component in the WVD [10]. A simple
way to avoid the alasing is 1o introduce the
anatytic signal beforehand [11].

Since the WVD has a A/2 period, we can

rewrite Eq.(5) as follows

28



2N-1 .
w{mat kdw) = 24t }:0 sl{im+nmatls ((m-n)at}
=

e—}?mkIZN i (6)

where Aw = x/(2NAt) and Afis the sampling
interval. In £q.(8), the frequency resolution Awis
1/4 of the ordinary FFT, implying that the WDF
guarantees four times of frequency resolution.

To suppress the interference arising from
cross terms, we apply a sliding window in time-
frequency domain. The WODF, with the window

included, is usually called the PWVD or

smoothed WVD. We obtain the PWVD by

convolving the WVD and Gaussian window
function.

Ill. Sea Experiment

Figure 1 shows ihe locations of the sound
source and receivers. We used one sound source
and three receivers. The sound source projected
four LFM signals centered on 200, 400, 500 and
800 Hz with bandwidih 100 Hz. The signals were
swept up for one second and down for an another
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Fig.1. Station map of the acoustic experiment.

second. That is, they were repeated to produce
the class A (swept up) and B (swept down)
signals every two seconds. To check the quabty
installed a
hydrophone at 1 m away from the source and

of the projected signals, we

monitored the signals. The source was operated
on the water depths of 10 and 30 m.

We also deployed a CTD (conductivity,
temperature and depth) equipment to get
oceanographic data for resolving water conditions.
A few days before the expenment, there was
north-westerly strong enough to mix the whole
waler column.

We used two kinds of receivers, the sonobuoy
AN/SSQ-57A (DRR1,2) and sonobuoy AN/SSQ-
578 (BMR). The latter was modified so thal it
could separate received signals into the north-
south and east-west components. Two sonobuoys
{DRR1,2) were connected each other by a 100 m-
long rope and allowed to drft in water keeping
water deplh of about 18 m. However, they were
again connected to the weight on the sea bottom
via the rope so that they could drift just in a
limited area. The modified receiver (BMR) was
installed on the sea bottom in which depth is
around 60 m.

The bottom of the experiment area consists of
sand-sill-clay. s typical geoacoustic parameters
are characterized by densily 1600 kg/m®, porosity
67.2 %, sound speed 1510 m/s, and attenuation
coefficient 0.5 dB/2. {12).

The profile shows typical pattern of very well
mixed water, remaining almost same velocity
from the surface to ihe bottom. This patlemn was
caused by the strong north-westerly a few days
ago.

Figure 2 presents an example of the PWVD of



the signals monitored at t m away from the
source. In this case, the signal was swept down
(class B). It was to check the quality of the
projected signal with time. In the figure, the
frequency and lime axes span 256 bins,
representing 1024 Hz and 1 second, respectively.

fach LFM signal has bandwidih 100 Hz. Among
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Fig.2. Spectrogram example via the PWVD on
the class B signal monitored at 1 m away

from the source.

the four LFM signals, the one of center frequency
600 Hz, is the most intensive (i.e., SNR is the
highest). Even in a 1-second period, we can see
that there exists intensily varialion with time,
particutarly in the fourth LFM signal, center
frequency being 800 Hz.

An example of the received signal at 5.4 km

away from the source (Fig.3) shows that there are
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Fig.3. Spectrogram example via the PWVD on the

measured signal (class A).

obvious four LFM signals. In this example, the
signal was swept up {class A). As shown in the
monifored signal, the third L.LFM signal has the
strongest intensity. The frequency and time axes
correspond to 1024 Hz and 1 second, respectively.
It is via the PWVD on the signals at depth 60 m.

V. Neural Network Training

In performing the STFT, we use 256 points of
data with Hameming window and 64 points overlap.
This transformation gives 128 frequency bins and
15 time frames. Among 128 frequency bins, 15
frequency bins are shared for each LFM signal.
That is, each LFM signal {class A or B) spans for
15 frequency bins. Hence, the network needs 225
input neuwrons (15 bins x 15 frames) for each
signal. Meanwhile, the PWVD presents 128x128
spectrum data in time-frequency domain where
each LFM signal spans for 15 frequency bins. We
select time frame in every 8-step interval so that
the network needs 24¢ input neusrons for each
L FM signal.

We choose the network of three layers; input,
hidden and output. The number of neuron in the
hidden layer is set to 19,

To prepare the training data set for the petwork,
we simulate time signals at range 2 km. We take
the sound speeds in water to be constant value of
1482 m/s and other input parameters 10 be typical
values of sand-silt-clay bottom. The LFM signal is
swept up or down with bandwidth 100 Hz and
center frequency 800 Hz. Time signals are
simulated such {hat they give 2048 poinis per one
second.

The way how 1o train the network is shown
in Fig.4. At each receiver depth, we obtain one
input data set representing the cnaractenstics of
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the class A or B signal. The STFT and PWVD
require 225 and 240 input neurons, respectively.
The spectrum data are nommalized relative to the
maximumn value and converted to one
dimensional data, x[k] (k=1.2.....NT*NF), where
NT and NF are the numbers of time frame and

frequency bin, respectively.

ChasaB
(down-swept)

One Dimenspnakzed
Input Can

k) 0=12,.. NT'NF

Frequency Bin (j=1.2,.. NF)

Fig.4. Preparing procedure of the iraining dala.

Figure 5 shows the training data sets. They are
obtained by applying the PWVD over the
simulated signals at range 2 km. The water depth
is 60 m and the model gives time signals at each
0.5 m so that 120 spectrograms come out. The
two training data sets give obviously different
pattems with depth cell. As the training data
represent more varieties of the larget data, the
network would be able to perform better on the
test data. In this sense, the two spectra examples
may be good training data sels because they have

{(a) class A (swepl up)

(b} class B (swept down)

Fig. 5. Power spectra examples for the network
training.

variable but almost independent spectra with time
and input neuron. In training the network, we
the algorithm,
annealing plus conjugate gradients {13]). it
combines the global search strategy of simulated

introduce minimum-seeking

annealing with the powerful conjugate gradient
aigorithm. Typically, the network converges to the
minimum within three steps where the allowable
error is 0.0005.

V. Network Perfermance on Measured Signals

5.1. Vanation of Feature Extraction Technigue

Table 1 gives the performance comparisons from
the two feature vectors: spectra distributions by
the STFT and PWVD. The network has been
trained on the simulated signals. The table shows
that the two transforms guarantee almost same
performance on an average. On the class A signal,
the PWVD is superior lo the STFT and on the
class B signal vice versa. Examining each
performance, we can see thal the network can
classify nearly 90 % or more of the received
signals except for the class A signals of center
frequency 800 Hz in case J) and (1.
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Tabte 1. Network performance (%) with the
feature extraction techniques varied.

Receiver | Center|
Case| (SD, m) Freq. STFT PWVD
(Hz)

200 *100/100 100/100
| BMR 1400 1001100 100/100
(30) |[600 100/100 100/10¢

800 93.8/100 100.97.9
200 1007100 1001100
Il DRR1 | 400 100/100 100/100
(30) | 600 100/100 100/100

800 59.7/925 | 64.9/933
200 100/100 100/100
m DRR2 | 400 98.5/100 100100
{30) | 600 100100 1004100

800 60.4/91.8 | 65.7/90.3

v 200 100/100 100/99.3
BMR { 400 92.6/100 1001100
(10) | 600 100/100 100/100
800 89.2/100 100/100

Avg. 93.4/99.0 | 95.7/98.8

(“Yclass A/ class B

As a whole, the network performance by the
two transforms (STFT and PWVD) present similar
trends and are very comparabie to each other on

an average.

5.2. Vanation of Training Data Set

We examine the network performance when
the training data sets are changed from the
simulated signals to the measured. We restrict our
discussion to lhe resuits via the PWVD. As can be
seen in the PWVD of the signals monitored at 1 m
of the source (Fig.2), the signal centered on 600
Hz has the highest SNR. Hence, we select the

PWVD from the measured signal of center
frequency 600 Hz in case | as the training dala set.

Table 2 summarizes the network performance
with training data sets vaned from the simulated
data to the measured. In some cases, the network
performs worse on the simulaled training data (for
example, 800 Hz in case Il and I1l). However, the
network shows better or comparable performance
on the average for other cases, promising lhe
the

simulaled data. The nelwork, trained on the

applicability of lhe network trained on
measuwred signals, gives slightly better resulls than
that on the simulated, lhe tmprovement being
1.40 % and 0.64 % for the class A and B signals,
respectively.

Table 2. Network Performance with the
training data sels vared.

Receiver | Center| Training Data Set
Casq (SO, m) Freq Simulated Measured
(Hz)
200 | *100/100 100/100
| BMR 400 | 1007100 100/100
{30) 600 | 100/100 100/100
800 | 100/97.9 97.3/100
200 | 100/100 100/100
It DRR1 400 | 100100 100/100
(30) 600 | 1007100 100/100
BOD | 649/93.3 | 85.1/955
200 | 1001100 100/100
IH DRR2 400 | 1001100 1007100
{30y 600 { 100/100 100/100
800 | 65.7/90.3 | 84.3/96.3
v 200 | 100/99.3 93.8/99 3
BMR 400 | 1007100 93.2/100
{10) 600 } 100/1G0 100/100
800 [ 100/100 100/100
Avg. 85.7/98.8 | 97.1/99.4

(") class A fclass B
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5.3. Variation of Center Frequency

We present the network performance when
center frequencies are varied from 200 to 800 Hz.
Table 3 summarizes the performance with center
the
The overall

frequencies varied on simulated and

measured signals. performance
reaches over 80 % in all cases except the case of
center frequency 800 Hz and class A where it is

87.2 %. Among the four center frequencies, the

signals centered on 600 Hz are classified perfectly.

When we have trained the network on the
measured data, we chose lhe signals of center
frequency 600 Hz. Thus, the network performance
on the measured data of 600 Hz is actually
verified results on the training sets. This perfect
outputs may be also anticipated from the
monitored signals in Fig.2 where the SNR is the
highest on 600 Hz ang the lowest on 800 Hz. The
sound source was operated to have source levels
of maximum 168 dB on 200 Hz and minimum 150
dB on 800 Hz [14), but the SNR is the highest on
600 Hz.

Table 3. Network performance (%) with the center
frequencies varied.

Anyway, even though the network is trained on
ihe signal on a particular frequency (800 Hz on
the simulated data and 600 Hz on the measured),
it performs well over signals ot other frequencies.

5.4. Vanation of Receiver Depth

We conducted the acoustic experiment al two
receiver depths where the receivers were lhree.
One of them was installed on the sea bottom
(BMR i.e., case I) and the other two (DRR1,2, i.e.,
case I, i) were allowed to drift around the
installed location keeping their depths to be 18 m.

in Table 3, we can see that the network
performs better in case | than in case |l and I
{particularly on the class A signals of 800 Hz)
irespective of the training data types (simulated
or measured). However, the average performance
is over 90 % in all receivers.

5.5. Variation of Source Depth

We changed source depths during the
expenment between 10 and 30 m, and in each
depth we operated the sound source for more than
15 minutes.

Center Freq. (Hz)

Case 200 400 600 800
1(S) | -toM100 | 1007100 | 1004100 | 100/97.9
(¥ (S) 100/100 1004100 100100 64.9/03.3
H(S) 100/100 100/100 100/100 65.7/90.3
IV {S) 100/99.3 100G/100 100/100 100/100
i (M} $00/100 10047100 | 9001100 97.3/100
I {M) 1004100 1004100 100/1G0 851/95.5
mml 100100 1001100 | 100100 | 84.3/06.3

IV (M) 93.8/99.3 93.2/199 100/100 100/100
Avg. 99.2/998 93.2/100 100/100 87.2/96.7

As can be examined in Table 3, the network
performs over 90 % in all cases excepl for the two
cases (800 Hz in case N and Ill}. When we
compare the case | and IV, where the signals were
received through same receiver but source depth
was changed, we can see that lhe network shows
no significant change in performance on the
average. Thal is, when the network is trained on
the simulated signals, the performance is 100 and

{*) class A/ class B
S : simulated, M : measured

99.5 % for source depth 30 m (case i}, but it is
100 and 99.8 % for 10 m {case IV). In the network
trained on the measured signals (case | vs. V),
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we can obtain a little better performance for
source depth 30 m which
99.3/100 % (class Afclass B) compared with
96.8/99.8 % for source depth 10 m.

reaches up to

V1. Conclusion

We tried to test the classification performance
of a neural network and thereby lo examine its
applicability to the measured sigaals in a shallow
water environment. The training signals were
simulated using a time-domain acoustic model.
the network has been
ciassified over 80 % of the measured signals on

Once trained, it
the average. In conclusion, the signals, which
have been simulated through an acoustic model,
were successfully applied to training a network
and the trained network performed good enough
in classifying the measured signals.
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