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This paper presents the problem of fault-tolerant robust supervisory control of timed

discrete event systems (DESs). First the concept of faults is quantitativeley defined in timed DESs
and fault tolerable event sequences are presented as a desired legal language. Given a timed DES
with model uncertainty, the conditions for the existence of a supervisor which always guarantees fault
tolerable event sequences embedded in the system are derived.

Keywords Timed Discrete Event Systems, Fault-tolerant Control, Model Uncertainty, Robust Su-

pervisory Control

1. INTRODUCTION

The issues of fault-tolerance and safety are important
in the complex real time systems. System-theoretic
methods on failure diagnosis and fault-tolerant control
have been developed. In [3], the quantitative defini-
tions of faults, failures, and fault tolerant systems are
proposed in the Ramadge-Wonham framework for con-
trol of DESs [1]. However the approaches are based on
untimed models which can not explain the requirement
to satisfy stringent timing constraints. Also they are
not valid for analysis of the systems with model uncer-
tainty.

In this paper the problem of fault-tolerant robust
supervisory control of timed DESs with model uncer-
tainty is addressed, and the conditions to achieve fault-
tolerace of the systems are derived.

2. Model Uncertainty and Faults

In [4] a system G with model uncertainty is assumed as
follows. ' € {G1,Gs,...,(¢;n}. This paper follows the
above assumption about model uncertainty.

This paper uses the framework of timed DESs de-
veloped in {2]. Let’s review the framework. To
develop the base model, we write 5 tuple G, =
(A, Eqct, bact. ag, Am ). A 1s the set of activities a, L.y
1s a finite alphabet of event, é,.y : Xgpy X 4 — A Is the
activity transition function, ag € 4 is the initial activ-
ity and A,, C A is the subset of marker activities.

Let ¥ ={0,1,2,...}. In ©,., each event ¢ is equipped
with a lower time bound (delay) I, € N and an upper
time bound (deadline) u, € N U {o0}. For j, k € N let
(j.y =i e N|j<i<k} andlet T, := (0,u,) if
Uy, < 20, 0r T, := (0,15) if up = 0. Ty is called the
timer interval for . The states set in timed models is
Q = AxTT, | o € T4}, where T, |0 € Xy0p} is
cartesian product of elements in {1, | ¢ € ¥,.;}. Thus
a state ¢ is represented as ¢ = (a,{t, | @ € Tau})
where a € A and the t,(called timer of o in q)€ T,.
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The initial state is qo := (ag, {ts, | ¢ € Xawr}), where
the 1, are set to their default values, {,, = u, if
U, < 00 or t,, := [, if u, = oc. The marker state
subset is @ C Am X T, | ¢ € T4} We intro-
duce one additional event, written tick, to represent
“tick of the global clock”, and take for our total set of
events ¥ := ¥,,U{tick}. The state transition function
6 : ¥ x @ — @ will be defined in detail below. We can
now write G = (Q,X,8,¢p, Q). Then G is called a
timed discrete event system (TDES).

We now provide the formal definition of 6.  Write
6(0.q) = ¢, with g = (a, {, | 0 € Saec)). ¢ = (' (" |
T € Zacr}). Then §(a,¢)! (! means “is defined”) if and
only if (1) ¢ = tick and (V7 € {¢ | u, < x}) t, > 0, or
(2) o € {o|uy < 0}, 8:0(0,a)!, and 0 < 1, < u, —1,,
or (3) o € {6 | up = 0}, 8ze4(c,a)!, and t, = 0. The
entrance state ¢’ 1s defined as follows. (1) Let ¢ = tick.

Then o’ = a and if 7 € {o | v, < oo}, t = u, if
not daee(m @) or t, :=t; — 1if 850¢(7, @) and ¢, > 0.
Ifre{a]u, = o}, t. = I if not é,.¢(7.a)!, or

o=t = Lifég(r,a) and t, > 0, 0r ¢, =, > 0if
bact(T,a)! and t; = 0. Recall that if 7 € {o | u, < 0}
and ¢, = 0 then not é(tick.q)!. (2) Let ¢ € ©,.;. Then
a' = b,(0,a) and if 7 # o and 7 € {a | v, < x},
t = uy if not da (T d) or th =t if Sgei(T. @) I
r=cand o € {a|u, <}l t! =u,. 71 # ¢ and
TE{afu, =2}t =1l if not daer(7,a) ¥, = t, if
bact(Tyd ). If T =0 and 0 € {a | uq =}, t! = 1,.

In timed DES models. the forcible events, ¥, C
Yact, are defined. By forcing action of supervisor.
forcible events preempt a tick of the clock. The closed
behavior L(G) and marked behavior L,,(G) of timed
DES G are L(G) {s | 5 € £ and é(s,qn)!} and
L(G) = {s|s € L* and 6(s.q0) € Qm }.

Let & be a TDES, and A(q) be a set of events possible
to occur after state q. Then fault and failure are
defined as follows.

Definttion 1 (fault event) : The aug-event (o;.qs) s
a “fault w.rt Q" and oy is called a “fault event” if



(1) 0y € Zan  and

(2) there exists at least one event sequence s € {t €
I* | o5t € L(G)} such that o5s leads to the marker
states set Q,, and for each aug-event (s;,q;) of s =
5182...8n, any 0 € A(q;) — {s:} for all s; correspond-
ing to q; is another faull event or tolerable normal
event or belongs to

.
{ . — {tick}

Definition 2 (fatlure) : The aug-event (0f,qs) s a
“failure w.r.t. Qn” and oy is called a “failure event”
ifo; € Zan and (of,q5) is not a faull.

if s; or one of tolerable normal
events s forcible event
otherwise

Definition 3 (tolerable normal event) : The aug-event
(0,9) is a “lolerable normal w.r.t. Q" and o s called
a “tolerable normal event” if
(1) c € (X, NZyue) U {tick} and
(2) there exists at least one event sequence s € {t €

T* | ot € L(G)} such that os leads to the marker

stales set Q,, and for each aug-event (s;,q;) of s =

5182...8n, any o € A(qi) — {s:;} for all s; correspond-
ing to ¢q; is faull event or another tolerable normal
event or belongs to

e
T, — {tick}

Definition § (tolerable fault event sequence, TFES) :
The event sequence which consists of normal events
or fault events and which derives the initial state to
the marker states ts called a “tolerable fault event se-
quence(TFES)” if, for each normal event, all the possi-
ble events following the corresponding state are tolerable
normal events or fault events or belongs to

tf s; or one of another tolerable
normal events is forcible event
otherwise

P if at least one event of the events
(including normal events in TFES)
ts forcible event

otherwise

3. Control
Let’s define the set of all TFESs in a process G; to be
TF(G;), that is, TF(G;) := {t € L(G;) | t is a TFES}
Let’s define the set of a;rlll TFESs of all models to be
T(G), that is, T(G) := |J TF(G))
i=1

. — {tick}

Definition 5§ (fault tolerant robust supervisor): A su-
pervisor S is “fault tolerant robust supervisor” for a
system G € {G1, G2, ..., Gn} if there exists a language
Ki, Ki # 0, for each G; such that K; C TF(G;) and
L(8/G;) = K;, where i =1,2,....,m.

For a string s in a language L, let’s define Af(s) to be
Ap(s) := {a € £ | s € L}, and it is called active
events set after a string s.

For a string s € L(G;), let’s define Dgp(g,)(s) to be

{a € %] a € (AL (s)— Arrc,)(s))} if s € TF(G)),
otherwise 0. For a s € |J L(G;), let’s define SEL(s) to
i=1

be Apy(s) — (U Dgr(g,)(s) — {tick}). In a timed
i=1

DES G € {Gi,...,Gn}, let’s define RISK(G) to be
{s € T(G) | SEL(s) N Arp(g,)(s) = 0 for at least the
one of G;’s satisfying Arp(g,)(s) # 0} U {s € T(G) |
SEL(s) N(Arr(c.){(s) N Ejori) = 0 for at least the one
of G;’s satisfying tick € Dgp(a,)(s)}

Lemma ! If a supervisor & s a fault tolerant ro-

bust supervisor for a system G € {Gy,Gs,...Gn}, then
L(S/GYNRISK(G) = 0.
Proof : Suppose that t € L(S§/G) and ¢ is the element
of the right first set of the RISK(G) definition. Then
there exists at least a G; such that Appg,(s) # 0
but SEL(s) N Arp(a,)(s) = 0. Therefore if the con-
trolled system is G, there do not exist event sequences
to satisfy path-continuation of TFES in the G; after
the string s. Thus for the G; there does not exist a
K;, K; # 0, such that K; C TF(G;) and L(S/G;) =
'K;. This is contradiction.

Suppose that ¢ € L(S/G) and t is the element of the
right second set of the RISK(G) definition. Then there
exists at least one G; such that tick € Dgrp,)(t)
and SEL(t) N (Arpe)(t) N Zfori) = 0. Then if the
controlled process is G;, there do not exist forcible
events to preempt tick after the string ¢. So the
tick becomes an uncontrollable event, which may de-
viates the system,G;, from TFES. Then for the G;,
there does not exist a K;, K; # 0, such that K; C
TF(G;) and L(S/G;) = K;. This is contradiction.
[}

Theorem 1 Let TF(G;) £ 0 forallG;’s and KC {s €
T(G) | sN RISK(G) = 0}. Then there exists a fault
tolerant robust supervisor for a G € {G1,Ga, ..., G} if
and only if there exists a K. K # 0, such that for all
se N

(A1) Ak(s)N Arpig,)(s) #0 for each G; such that
Arrc)H(s) # 0,

(42) Ax(s) C SEL(s),

(A3) Ak (s) N (Arr,)(s) N Efors) # B for each G;
satisfying tick € Dgr(c,(s), and

(A4)
Argy(s) N Xy iftick ¢ SEL(s) or
Ar(s) N (Arrc () NZpori) # 0
Ak(s) D for each GG; satisfying

tick € ATF(G,)(S)
Are)(5) N (Bye U {tick}) otherwise

Proof : (If part) Consider a supervisor S, S(t) = {a €
Y | ta € K} = Ak(t) , which means the set of the
enabled or forced events after occurrence of the string
t in the controlled process.

First let’s consider the initial state, ¢ = €. Since
TF(G:) # 0 for all Gi’s, Appg,y(€) # @ for all Gy’s.
Thus by A(1), S(¢) N App(g,(€) # 0 for all G;’s. Thus

Apisiay€) #0  for all Gys. (1)

Suppose that for some G;, Ar(s/c,)(€) D Arpg,)(€).
Then there exists an event o satisfying a €



Aprsjan(€) N Dgrpeg,y(€). If a is not tick, 1t con-
tradicts to A(2). If « is tick, it contradicts to A(3).
So
AL(S/G,)(f) - ATF(G,)(f) for all G;’s. (2)
Consider a case of ¢t # €. According to the same

procedure as the initial state, the following results can
be proved.

Apsiayt) #0 (3)
for each G; satisfying Arpeg,)(t) # 0.
Apnsian(t) € Arrc,H(2) (4)

for each G; satisfying Arpig, (1) # @.

But there may be exist a string s such that ts €
L(S/G) and ts € RISK(G). For all G;’s A(4) guaran-
tees L(S/G;) N RISK(G) = 0.

In summary, by (1), (2), (3), (4), it i1s true that for

each Gy, there exists a K;, K; # 0, such that K; C
TF(G;) and L(S/G;) = K;. Therefore S is a fault
tolerant robust supervisor.
(Only if) Consider a supervisor S, S(t) = {a € £ | ta €
K} = Ag(t) , which means the set of enabled or forced
events after occurrence of the string t in the controlled
process. And assume that & is a fault tolerant robust
SUPErvisor.

For each G; satisfying Arpa,)(t) # 0, S(t) N
ATF(G,)(t) # ). This implies that AK(t)ﬂATF(G| ) (1) #
0 (A(1)). For G;’s satisfying tick € Dgrp(g,)(t), S(1)
has at least the one forcible event to preempt tick. That
is, S(t) N (Arpic,)(t) N Efori) # 0. This implies that
S(t) n (44TF(G,)(t) N Efor,i) # @ (A(3))

Suppose that S(¢) D SEL(t). Then for some G;
there exists an event « satisfying o € S(t) — SEL(1)
and o € Dgrp(g,y(t). Thus the controlled some G,
may be deviated from TFES of G;. This contradicts to
the fact that S is a fault tolerant robust supervisor. So
S(t) C SEL(t), that is, Ax(t) C SEL(t) (A(2)).

Since S is a fault tolerant robust supervisor, by
Lemma 1 L(S/G) N RISK(G) = 0. Consider a case
of tick ¢ SEL(t). Let o € ¥, and assume that
tae € T(G) but ta ¢ K. Then there must exist a
B € ¥* such that taf € T(G) and taf € RISK(G).
So for some G,, ta? € L(S/G;). This contradicts to
L(S/G)N RISK(G) = 0. Therefore ta € K, that is,
Ak (t) D Apie)(t) N Xy,

Consider a case that for each G; satisfying tick €
Arre)(t), Ax(t) N (Arp,)(t) N Tyori) # 0. Let
o € ¥ and assume that to € T(G) but ta ¢ K. If
o € ¥,., contradiction also happens by above result.
If « = tick, o can be preempted by events in Ax (1) N
(ATF(G,)(t) N Efor,i)~ So AK(t) 2 AT(t) N Euc~

Consider a case that for some G; satisfying tick €
ATF(G.)(t)» tick e SEL(t) and AK(t) n (ATF(G,)(t) N
Ztori) :_(22, Let @ € ¥ and assume that ta € F(E_)
but ta ¢ K. If & € T, contradiction also happens by
above result. If o = tick, L(S/G;) N RISK(G) # 0. It
contradicts to the fact that S is a fault tolerant robust
supervisor. So Ak (t) D Ar(t) N (e U {tick}).

In summary, K satisfies A(1), A(2), A(3) and A(4). The
proof is complete. a
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4. Conclusions

The problem of supervisory control of timed DESs is
developed to achieve fault-tolerant behavior of the sys-
tems with model uncetainty. When a given set of sys-
tem models satisfies existence conditions developed in
this paper, there always exists a fault-tolerant robust
supervisor which assures fault-tolerance of the system.

References

1] P. J. Ramadge and W. M. Wonham, “Supervi-
sory control of a class of discrete event processes,”
SIAM J. of Control and Optimization, vol. 25, pp.
206-230, 1987.

B. A. Brandin and W. M. Wonham, “Supervisory
Control of Timed Discrete-Event Systems.” J[EFE
Trans. on Automatic Conirol, vol. 39, no. 2. pp.

320-342, 1994.

K.-H. Cho and J-T. Lim, “Failure Diagnosis and
Fault Tolerant Supervisory Control Systems,” [E-
ICE Trans. Inf. and Syst., vol. E79-D, no. 9, pp.
1223-1231, 1996.

Feng Lin, “Robust and Adaptive Supervisory Con-
trol of Discrete Event Systems.,” TEEFE Trans. on
Automatic Control, vol. 38, no. 12, pp. 1848-1852,
1993.



