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[Abstract]

In this paper, the power system stabilizer(PSS) using the =[a6..80,,.0¢,,A
sliding mode observer-mode} following(SMO-MF) including - { D Brs Aot I
closed-loop feedback(CLF) for single machine system is A8, 0w, 06 ey W
extended to multimachine system. A8, Aw,,,be,, Aem,]’
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System The 12-th order state equation for the controlled plant can be

expressed as

1. Introduction
x -[AS,,,:’.\w,,,Aev,, .
In many situations, the entired state vector cannot be 88,1, A0,, 8¢, By (2)
measured and the control law must be based on an estimate of he
the state, rather than the actual state. To solve these problems A‘Swf-\“’wA%vA"m»]
of the full state feedback[1-4], the sliding mode observer-
model following(SMO-MF) for unmeasurable plant state
variables is developed in this paper. The values of the output
vector can be obtained by measuring angular velocity. In this
paper, the power system stabilizer(PSS) using the sliding as
mode observer-model following(SMO-MF) including CLF
for single machine system is extended to multimachine
system.

3. Multimachine SMO-MF controller including CLF

The state equation for a reference model can be expressed

i'_(!)= A4, ':_(I) +5, -u_(!) (3)

2. Multimachine mode! where x_ eR" is a state vector for model and w, eR” is a

control input for model. The control input of a reference

")) Plant No.l \!

model with r, can be expressed as

et}
() ()= -K. 5 ) +r.0) @
Busl i 0.1285+§0.715% - . -
0.427~j2.638 : ’
B it A N N where K, is a mxn feedback gain for model and can be
Plant Yoz ¢ | . “Plant No.3 . : .
(Hydro) 0.1702+]0. 7988 oy (hydro) obtained by pole placement. And r, R" is areference input

i

vector for model.

> — 'ruu 173 .
\\/_}a:tz__ 1 0062&*:0.4‘4:‘ ’\6 i The closed loop feedback system for a reference model is
01121512261 i i LY T SN
T : ; ! < : .
R \ 0.0686410.3520 | 2()=(4.—B.-K.) x.()+B,-r(1) &)
© Plant o4 | !
¢ Uiydro=60) 3 ; Let 4,.=4-B. K, (6)
- /"'\\‘ - i ;,) 0926450.6308
1000 tdee . : :
* J ¢ vt 1o The state equation for the reference model including CLF can
p.u. on 100087 )

0.2363+j1,714 §

be reformed as

Fig. 1 Three-machine/infinite busbar sysiem.
)+ 8. n() 0]

2 {)=4,-x(
The 12-th order state equation for a reference model can be

expressed as
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where 4, is @ nxn system matrix including CLF for
model.

The state equation for the controlled plant with the parameter
variations and the output equation can be formed as

()= (A, + AA,)‘xF(I) + (B, + AB,)- u{1)
=4,x(1)+5,-u() (8)
w{)=C, 2,0 ) 9

where 4 =4,+A4 IS @ nxn System matrix with the
parameter variations for plant and B =8, +48, 2 xxm
control matrix with the parameter variations for plant. And
C, isthe mx» output matrix for plant,

The following linear full-order observer equation of the
controlled plant for unmeasurabie state variables can be
expressed as

’gy(’): 2’ 'fr(,)+§r 'ul(’)* Lr -(y,(l)~C, ’3;(’))

=(Z,—L’»C,)~£,(:}+§’~up(l)+L,-y,(r) (10)

where %, eR* is the estimated state for plant.

L =P -C'-R an
isthe »xm output injection matrix for plant.

P, is the symmetric positive definite solution of

Z,-P’+P’-Z:-—P,-C:-R;’~C,»P,+Q’=9 (12
Q, and R, are positive definite matrices chosen by the
designer.

The input control vector with a feedback gain for
unmeasurable state is expressed

w,{)=v,, (l)+ (1)
='K,"‘?p(f)*"mo(") a3

Substituting €q.(13) into q.(10), for unmeasurable state, the
following full-order observer equation of the controlled plant
including CLF can be expressed as

£0)=(4,-L,-C,)-5,0)+ B, -u,0)+ L, -5,0)

=(A= 1, C) 5,00+ B an) £, 5,0) (14

where 4, =(§,—§, -K,) isa nxn system matrix with the

parameter variations including CLF for plant.
The error vector and the differential error vector can be
expressed as

er)=x.()-5,0) (s
{)=1.()-5,0) (16)
By substituting eq.(7) and eq.(14) into eq.(16), we have

€)=1.0)-4,0)
=[4n-z.()+ 8. .r,(,)]-[(;,, -1,¢)4,)

+B, -ugnli)+ L, - y,(:)] (7
z()=el)+5,() (8)

By substituting €q.(18) into €q.(17), we have

)= A x )+ Bon )= (4, - L, -C,)-5,0)

_Er 'ilmo(l)-‘ Lr . y’(‘)

= Ay oel)= (A, - £,-C, = 4.)-3,(1)+ B.-1.(1)

mE"”&\ﬂ(’)u Lﬂ ‘yl(’) (19)
Suppose the sliding mode exists on all hyperplanes. The

sliding surface vector and the differential sliding surface
vector can be expressed as

s(e(l)) =G e(l) 20)
.i{e(l)) =G"-¢(1) @n

where G7 is the sliding surface gain.
To determine a control law that keeps the system on

A{e(l)):o , we introduce the Lyapunov’s function

y (e(l)) = s‘(e(l))/ 2 22)

The time derivative of V{e(s)) is given by

V(e(l)) = s(e(l)) . S(e(l)) 23)
=G -et)-G™-€{1) 29
< G-l [G7 A lr)

-6"(4,-L,C,- 4.)%,()+ G"-B.-1.(1)
~G" B, ugo(1)-G7-L,-5,(r) ] s0 (25)

From eq.(23), the control input vector with switching for
the controlled plant can be represented by

s (1) z(G' -E,)" -{G’ A -e{)-G” -(Z. -L,-C, - A,_)-},(:)

+G'-B, r(1)-G"-L, Ay,(l)] Jor G -e(k)>0 26)
w5, (1) S(G’ 75,)4 -{G’ . A_-e(l)—G’~(§, -t,-C, - A,,)-i-,(:)
+G" B, -1, (-G -L,-3,()] for G’ -e(k}<0 @7

From eq.(26) and ¢q.(27), the control input vector with sign
function for the controlied plant can be reformed
W (1) = [SE o -elt) + P £,(1) 4 SU,o -1, (1) +50,. -5, ()]

e sign(s(e(l))) 28)
where x is the bias gain.

SE,=(G" -E,)" G- A, (29)

is a sliding equal error feedback gain.
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SPui=HG"-8,) 6" (4, - 4.-1,-C,) (30)
is a sliding equal estimated plant feedback gain,

SUui=(67-,) 6" . G1)
is a sliding equal input gain.
S0.=-{G"-8,)"-G"-L, ¢2)

is a sliding equal measured output gain.
4. Multimachine data analysis

In this paper, the values of the 12 x12 system matrix A,
are decomposed into the 4-block form

4 4
A = -] -l
" {A-u 4 :|

where
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The 12 x3 control matix B, is given

.
o
0
1000
The values of X, are
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K =|-7431 8064 -455 04 423 B8I1 204 075 -68% -%434 4di 04
530 j408 139 D2 &2 -763 08 000% 2285 5862 276 08

Then for simulations, the controlled plant system matrix and
the plant input vector are given by adding the plant parameter
uncertainties with reference model.
A =4 +0M =4 +10% of 4,
B,=B_+AB_=B _+10% of B.
The values of the output C, are obtained by measuring
angular velocity
c,=p1ooo010001 00
The output injection gain L is
L= 10-003-{-207 000 019 -301 -3 001 009 -271 -00F 000 005 0N
The 12x3 sliding surface matrix including CLF is obtained

as

01 -2590 134 1 41 5770 343 0 52 -3630 608 0]
G=1919 110 343 0 354 -529 14 ) -395  44d 1 e
108 3430 £03 0 367 .-993 0973 1 -5 12108 722 1

§. Time domain simulation

For the torque angle of inachine #1, #2 and #3, the time
domain simulations are carried out for 6 sec.

Q.OGOO.{ -model-- plant
004001 [ ,f

00000 L2 ;
004009 % 2 3 4 5 s%

-0.0800 1

time[sec)

{a) torque angle of machine #1.

0.1500
eo7soI t efor
0.0000 -
007504 2 3 4 5 8
0.1500 L
time[sec]

(b) torque angle of machine #2.

time[sec]

{c) torque angle of machine #3.
Fig.2 Torque angle waveforms.

Fig. 2 shows that the proposed multimachine SMO-MF PSS
for unmeasurable state variables is able to achieve asymptotic
tracking error between the reference model state and the
estimated plant state at.different initial conditions.

6. Conclusion

The sliding mode observer-model following(SMO-MF)
power system  stabilizer(PSS) including closed-loop
feedback(CLF) for single-machine power system has been
extended to multimachine systems. The multimachine SMO-
MF PSS for unmeasurable state variables has been designed
not only to damp out the low frequency oscillations of the
multimachine power system by -including CLF, but also to
achieve asymptotic tracking error between the reference
model state and the estlmated plant state at different initial
conditions.
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