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Design of Full-Order Observer-based SM-MF Controller including CLF
for Power System Stabilizer : Part 4

Sang-Seung Lee® and Jong-Keun Park
School of Electrical Engineering
Seoul National University

[Abstract]

This paper presents the sliding mode observer-model
following(SMO-MF) power system stabilizer(PSS) for
unmeasurable plant state variables. This SMO-MF PSS can
be obtained by combining the sliding mode-model
following(SM-MF) including closed-loop feedback(CLF)
with the linear full-order observer(LFOO).

Keywords Sliding Mode Observer-Model Following,
Closed Loop Feedback, Power System Stabilizer

1. Introduction

In many situations, the entired state vector cannot be
measured and the control law must be based on an estimate of
the state, rather than the actual state. To solve these problems
of the full state feedback[1-4], the sliding mode observer-
model following(SMO-MF) for unmeasurable plant state
variables is developed in this paper. This SMO-MF PSS can
be obtained by combining the sliding mode-model
following(SM-MF) including closed-loop feedback(CLF)
with the linear full-order observer(LFOO).

2. Synchronous generator model
The block diagram of the synchronous generator system

model with voltage regulator and exciter for a single machine
to the infinite bus system is shown in Fig. 1[5].
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Fig. 1 Block diagram of a synchronous generator system.

The differential equations of the one-machine, infinite bus
system in Fig. 1 can be written as
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3. A SMO-MF controller including CLF

The state equation for a reference model can be expressed
as

i'_(l) =4, ~x_(l) +B, -u_(l) (6)

where x_eR" is a state vector for model and »_ eR' is a
control input for model. The control input of a reference
model with r, can be expressed as

u(ty=-K x.()+r{) @)

where K, is 2 1xn feedback gain for model and can be
obtzined by pole placement. And

vector for model.
The closed loop feedback system for a reference model is

r. eR' is a reference input

5 ()=(4. =Bk} x.())+ B, -r.() 8)
Let 4_=4-B.-K )]

The state equation for the reference mode! including CLF can
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be reformed as
()= 4. x{)+B.-n{) (10)

where 4,_ is a npxn System matrix including CLF for
model.

The state equation for the controlled plant with the parameter
variations and the output equation can be formed as

i,(l)a(A’ + AA’)~ x’(t) + (B, + AB’)mP(l)
= .3, a0+ 5, -u,{) {11)
»()=C,-5,(1) (12)

where 4 =4,+A4, is 2 nxn system matrix with the
parameter variations for plant and 5 «B8,+AB 2 axi
control matrix with the parameter variations for plant. And
C, isthe yxn output matrix for plant.

The following linear full-order observer equation of the
controlled plant for unmeasurable state variables can be
expressed as

5(0)= 4,300+ B, w0+ L, {5,0)- ¢, 5,0)

=(4,-1,-¢,)-5,0)+ B, -u,)+ L,-5,0) (13)

where , eR" is the estimated state for plant.

L =P-C.R 14
isthe »x1 output injection matrix for plant.

P, is the symmetric positive definite solution of

A, P +F A ~F CI-R'C,-P,+(Q,=0 (15)

g, and R, are positive definite matrices chosen by the

designer.
The input control vector with a feedback gain for
unmeasurable state is expressed

u, (I): oy (I)+ Uy (r)
==K, 5,()+ 1) (16)

where u_ (¢} is the closed-loop feedbagek control input and

u.o(f) the sliding mode obsever control input. And X, isa
1xn feedback gain for plant and can be obtained by pole
placement.

Substituting eq.(16) into eq.(13), for unmeasurable state, the
following full-order observer equation of the controlled plant
including CLF can be expressed as

s‘,(.)=(z, = L,C )50+ B, w () L5, 0)

=(Z,,~L,»C,)-fr,(:)+§,~u_w(r)+L,'y,(l) an

where Z,:(Z,—E,-K,) isa nxn system matrix with the

parameter variations including CLF for plant.
The error vector and the differential error vector can be
expressed as

) =x.()-%,() ' as)
o) =3.()- (1) (19)

By substituting eq.(10) and ¢q.(17) into €q.(19), we have

i)=1.0)-%,0)

=[4. x )+ B .r_(,)}-{(;i,, -1,-C,)4,0)

+B, uy 1)+ L, -5,0)] (20)
% (1) =)+ 3,0) @n

By substituting eq.(21) into €q.(20), we have

)= A 50)+ B n(0)- (3, - 1,-C,)-5,0)

_Ey “Uso (’)— Lf : yl (’)

=4, efr)- (Zv -1,-C, - A‘_)-f’(l)f%- B, -r{)

'E’ Y] (’) =Ly, (’) @2
Suppose the sliding mode exists on all hyperplanes. The

sliding surface vector and the differential sliding surface
vector can be expressed as

.\(e(i)) =G’ - e(f) (23)
{e))=6" (1) 24

where G7 is the sliding surface gain.
To determine a control law that keeps the system on

s(e(!)):: 0 , we introduce the Lyapunov’s function

V(e(l)) = s:(e(l)) 12 (25)

The time derivative of ¥{e{r)) is given by

P(et)) = o{ef0))- =) 6)

=G"-e(r)-G" (1) @n

By substituting eq.(22) into €q.(27), we have

P{efr) = 67 -elt)-G" [ Ac-elt)= (A - L,-C, - 4} 5,0)
BB, uno1)~ L, 1,0
=G’ -e(1}~[G’ -4, -eft)
6" (4,-L,-C,- 4.} £,()+ G- B. ()
-G" B, ug {}-G"-L,-5,(1) ] <0 (28)

From eq.(28), the contro! input vector with switching for
the controlied plant can be represented by

wao()2(67B,) [ An )67 (A =L, C.- ) 50)

+G" B, -r{1}-G"- L, ~y’(i)] Jor G7-e(k)>0 (29
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,,;w(,)g(G’.E’)J -{G'-A_~e(l)—G'~(2b ~LC,- .4_)-1"’(1)

+G" B -r(1)-G"- L, -yﬁ(l)] Jor G7-e(k)<0 30

From eq.(29) and €q.(30), the control input vector with sign
function for the controlled plant can be reformed

W)= [SE - et) + P 5,0+ U 1. (1) 450,03, (1)

u- sign(.\(e(l))) (31)

where . ¢ is the bias gain.

SE.i=(G7-B,) 67 4. (32)
is a sliding equal error feedback gain.

SPui={7B,) -G"(4,- 4.1, C)) (33)
is a sliding equal estimated plant feedback gain.
SU,ui=(67B,) -G7 -8, (34)
is a sliding equal input gain.

S0,.:=-{(¢"B,) a1, 33)

is a sliding equal measured output gain.

The detailed block diagram of the proposed SMO-MF
including CLF for unmeasurable state variables in Fig. 2 can
be shown as

Fig. 2 Block diagram of the proposed SMO-MF mcludmg
CLF for unmeasurable state variables.

4. Data analysis for SMO-MF PSS

The initial conditions to determine the values of the above
A_ and B, are found in reference{6].

The valuesof 4_ and B, for a reference model are given
-10108 -3393 -01305 01057 0

0 0 ~0.108 0 0
=|-00153 20735 -0.1846 0.495 0
-260C 0 0 =20 -2600
~78 0 ] -06 -79

J
B.=[0o 0 0 2600 78]
By considering nonlinear characteristics, the controlled plant

system matrix and the plant input vector are given by adding
the plant parameter uncertainties.

A=A +M_=A +10% of A,

B, =B +AB =B, +10% of B,

The values of the output C, are obtained by measuring
angular velocity

C,=fo 100 0

The output injection gain L is

L=10e-009-[0014 00 0005 04284 00122]

The sliding surface vector is obtained

S=[—1.7396 -61.8829 09864 -31327 1.000]'

5. Time domain simulation

The time domain simulation for different initial conditions
is carried out for a 10 sec. Fig. 3 shows that the proposed
SMO-MF PSS is able to achieve asymptotic tracking error
between the reference model state and the estimated plant
state at different initial condition.
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Fig. 3 Angular velocity waveform.
6 . Conclusion

The sliding mode observer-model following(SMO-MF)
PSS including closed-loop feedback(CLF) for unmeasurable
plant state variables at different initial condition has been
presented. Simulation result has been shown that the
proposed SMO-MF PSS including CLF is able to achieve
asymptotic tracking error between the reference model state
and the estimated plant state at different initial conditions.
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