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[Abstract]

In this paper, the sliding mode-model following(SM-MF)
power system stabilizer(PSS) including closed-loop
feedback(CLF) for single machine system is extended to
multimachine system. Simulation results show that the SM-
MF multimachine stabilizer is able to achieve asymptotic
tracking error between the reference model state and the
controlled plant state at different initial conditions.
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1. introduction

To design the PSS with better performance, the sliding
mode-model following(SM-MF) by K. K. D. Young[1] has
been applied to the PSS for an uncertain synchronous
generator  system{2]. And a sliding mode-model
following(SM-MF) power system stabilizer(PSS) including
closed-loop feedback(CLF) has been proposed for an
uncertain generator system with voltage regulator and exciter
for a single machine to the infinite bus system{3]. In this
paper, a power system stabilizer(PSS) for single machine
system is extended to multimachine system by using a SM-
MF with CLF.

2. Multimachine model
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Fig. 1 Three-machine/infinite busbar system.

For three-machine/infinite busbar system, each plant in Fig. 1
is represented by a single equivalent machine with machines

1, 2 and 3, rated 360MVA(Thermal), 503MVA(Hydro) and
1673MVA(Hydro), respectively. And Plant 4 effectively
represents an infinite busbar system{4,5].

The 12-th order state equation for a reference model can be
expressed as
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where 46,(r) is the torque angle for model, aw (1) the
angular velocity for model, e/ (1) the g-axis component of

voltage behind transient reactance for model and Ae,,, (1) the

equivalent excitation voltage for model.
The 12-th order state equation for the controlled plant can be

expressed as
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where A8,(1) is the torque angle for plant, aw, (1) the
angular velocity for plant, ae: (/) the q-axis component of
voltage behind transient reactance for plant and Ae,, () the
equivalent excitation voltage for plant.

3. Multimachine SM-MF controller including CLF

The state equation for a reference model can be expressed
as

i(N=4x()+B, u() 3)

where A4_ isa nxn System matrix formodel, B, a nxm
control vector for model, x_eR" a state vector for model

and u_eR" acontrol input for model.
The control input of a reference model with reference input
vector r_(r) can be expressed as

-1168 -



u_(l) ==K, x5 (1)) (4)

where x_=gr*-Bl.pP, 3
isa mxa feedback gain vector for model.

P, is the symmetric positive definite solution of

PoA + Al P =P BRI -BI.P+(, =0 (6)
Q. and R, are positive definite matrices chosen by the
designer for model. And r er" is a reference input
vector for model. :

By substituting (4) into (3), the closed-loop feedback system
for a reference model is

() =(4. =B K )= ()+ B r() 9]
Let 4 =d -B K, {8)

The proposed state equation for a reference model including
CLF can be reformed as

()= A x )+ 8. n() ®

where 4, S 8 nxn system matrix including feedback
gain for model.

The state equation for the controlied plant with internal
parameter variations can be formed as

=4, x,(1)+B, u) (10)

where .71, =4, +AM is a axn system matrix with the
parameter variations for plant and B =B,+AB, 38 axm
control vector with the parameter variations for plant. And
x, eR* is a state vector for plant and u, e " a control input
for plant.

The control input of the controlled plant with sliding mode
control input can be expressed as

u(0)=-K, - x,{0)+ () : an

where K, = R;*.E:‘p’ (12)
isa mxn feedback gain vector for plant.

P, is the symmetric positive definite solution of

P-4 +3-P-P-B.-RE.P+Q =0 (13)
@, and R are positive definite matrices chosen by the
designer for plant. And ug, eR" is a sliding mode control
input vector for plant.

By substituting eq.(11) into eq.(10), the proposed state

equation for the controlled plant including CLF can be
expressed as

5,0)=(3,=5,%,)5,0)+ B, -ua () (14

Let 4, =4-3 K (i5)

ot

The proposed state equation for the controlled plant
including CLF can be reformed as

i',,(t)= ;‘,'xy(l)+f}, 'us\,(l) (16)

where 4, is 2 nxp sSystem matrix including feedback

gain with the parameter variations for plant.
The error vector and the differential error vector are

e{r)=x (1)~ x,{1) (17)
dr)=x.0)-1,0) (18)

The limits of the error vector and the differential error vector
are

lim e(t)=0 (19)
lim é(/):() . (20)

From eq.(9), eq.(16) and eq.(18), we get

FOEEROEERG)
=A,. ‘x_(!)+ B, -r_(!)—- 2,; ~x,(l)- 1}, -um(l) (20)

x{)=elr)+x,{} 2N
By substituting eq.(21) into eq.(20), we get
)= A-cl)+[An - 4] 5,00+ B ()-B, v () @D

Suppose the sliding mode exists on all hyperplanes. Then,
during sliding, the switching surface vector in the error state
space can be expressed as

:(e(l)) =G efr}=0 (23)
{el)=6"-i)=0 (24)
In the above ¢q.(23), the algorithm of the sliding surface gain
7 is found in references[3,4]. To determine a control law

that keeps the system on s(e(l)):O, we introduce the

Lyapunov function
V{u(t)) =5 (e(!)}l 2 @25

The time derivative of ;(e(r)) is given by

I:(e(l)) = s(e(l)) - j(e(l)) (26)

=G efr)-G™-&{1) 27
=G o)) G [ A -el)+[4 - ] 5,0)
+8,-r.()-B, ~u_“,(l)1 <0 28)

From eq.{28), the control input vector with switching for the
controiled plant can be represented by

u()2(67-B) 67 (e e 4 - A ] 500+ 8. ()]
for G° c{l) >0 (29
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u;‘,(r)s(G’ -E,)>| -G” ~[A,_ -e(l)+[.4,_ - ;!,,]-x’(/)+ B, -r_(r)]
Jor G'-e{1)<0 (30)

From ¢q.(29) and ¢q.(30), the following control input with
sign function for the controlled plant can be reformed

un ()= [SE )+ 8P x (1) +SU . 7. (l)] e sign(.s(e(r)))

an
where g is a bias gain.
SEui=(67-B,) G- 4, (32)
is an equal error feedback gain.
5Pui=(6"-B,) -6 (4 - 4,) 33)
is an equal plant feedback gain. )
SU,ui=(G"-B,)-G" -8, (34)

is an equal input gain.
4, Data analysis and simulation

The data of a model is found in references[4,5]. In this
paper, the values of the 12x12 system matrix 4, are
decomposed into the 4-block form

[A_,, A_,.]
4, = :
A 4.

where
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The 12 x3 control matix B, is given

[ooosoooo o coo0 o7
B =[o0oo0 0 0009% 000 0
looo o 000 o 000 10w

The values of K, are

4280 2310 537 12 97 -1265 53 008 -101 3165 499 0!
K_ =]|-7431 8064 —465 04 428 Bl 204 075 —688 -%434 4Ui 04
580 1408 125 02 K8 -763 D08 0009 225 -5862 276 08

Then for simulations, the controlled plant system matrix and
the plant input vector are given by adding the plant parameter
uncertainties with reference model.

A=A, 40 =4 +10% of 4,

B,=B +AB =B +10% of B,

The 12x3 sliding surface matrix including CLF is obtained
as

G=
01 -2590 144 1 4 5770 343 O -52 -5680 608 O]
919 110 343 0 -354 -529 M1 1 -395 444 ) O

108 3430 603 0 367 -993 0973 1 218 -12100 722 )
For the torque angle of machine #1, #2 and #3, the time
domain simulations are carried out for 6 sec.
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(c) torque angle of machine #3.
Fig. 2 Torque angle waveforms.

Fig. 2 shows that the proposed multimachine SM-MF PSS is
able to achieve asymptotic tracking error between the
reference model state and the estimated plant state at different
initial conditions.

5. Conclusion

The sliding mode-model following(SM-MF) power system
stabilizer(PSS) including closed-loop feedback(CLF) for
single-machine power system has been extended to
multimachine systems. The multimachine SM-MF PSS has
been designed not only to damp out the low frequency
oscillations of the power system by including CLF, but also
to achieve asymptotic tracking error between the reference
model state and the controlled plant state at different initial
conditions.

References

{11 K. K. D Young, "Design of variable structure model
following control systems", IEEE Trans., AC-23, pp.
1079-1085, Dec., 1978.

[2] S.S.Lee, J. K. Park and J. J. Lee, "Sliding mode-MFAC
power system stabilizer”, Journal of KIEE, Vol.5, No.1,
pp- 1-7, Mar,, 1992.

{3] S.S. Lee, T. H. Kim and J. K. Park, "Sliding mode-
model following power system stabilizer including
closed-loop feedback”, Journal of KIEE, Vol.9, No.3,
pp. 132-138, Sep., 1996.

[4] W. C. Chan and Y. Y. Hsu, "An optimal variable
-structure stabilizer for power system stabilization”,
IEEE Trans., PAS-102, pp. 1738-1746, Jun., 1983.

{5] 1. ). Lee, "Optimal multidimensional variable structure

controller for multi-interconnected power system”,

KIEE Trans., Vol.38, No.9, pp. 671-683, Sep., 1989.



