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Design of Discrete-Mode CLF-based SM-MF Controller
for Power System Stabilizer : Part 2
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[Abstract]

In this paper, the continuous sliding mode-model
following(SM-MF) power system stabilizer(PSS) including
closed-loop feedback(CLF) is extended to discrete-time
sliding mode-model following(DSM-MF) PSS including CLF.
Keywords : Discrete-mode Sliding Mode-Model Following,
Closed Loop Feedback, Power System Stabilizer

1. Introduction

The sliding mode-model following(SM-MF) by K. K. D.
Young[l] has been applied to the PSS for an uncertain
synchronous generator system for dealing with the internal
parameter  variations[2]. And a sliding mode-model
following(SM-MF) power system stabilizer(PSS) including
closed-loop feedback (CLF} has been proposed[3]. The aim
of this SM-MF PSS including CLF is to achieve stable
generator system(only with left-hand poles) by using CLF for
unstable synchronous generator model and then is to obtain
asymptotic tracking error between the reference model state
and the controlled plant state for generator system. In this
paper, the continuous SM-MF PSS including CLF is extended
to DSM-MF PSS including CLF.

2. Synchronous generator model
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Fig. 1 Block diagram of a synchronous generator system.

The block diagram of the synchronous generator model is

shown in Fig. I[3].
The differential equations of the one-machine, infinite bus
system in Fig. 1 can be written as
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do.
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3. A formulation of DSM-MF including CLF

The continuous state equation for a reference model can be
expressed as

2.()=4 -2 ()+ B, -u{) 6)

where x eR", u eR', A4, IS a nxn system matrix for
model and B_ isa nx1 control vector for model.

The discrete-time state equation for a reference model can be
expressed as

x_[(k + 1)} =®_-x (k) + T, u{k) %A

x.€R*, u eR', @, and T, are the reference model state
transition and control transition matrices of appropriate
dimensions, evaluated using the following relations:

@ =e*" (€3]
L =(e~n 1) 47, ©
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where 7, is the sampling period and I is an identity matrix.
The discrete-time control input[4] of a reference model with
reference input vector can be expressed as

w (K)=-K_-x_(k)+r(k) (10)

where  r eR' is areference input vector for model.
K, isa 1xn» feedback gain for model and can be obtained
by pole placement.

By substituting eq.(10) into eq.(7), the discrete-time state
equation with the CLF for a reference model is

x_[(k + 1)] = (0. —TK.) x,(k)+ T, r(k) an
Let ®_=0_-T. K, (12)

The discrete-time state equation for a reference model
including CLF can be reformed as

x_[(k+])]=<D,_'.r_(k)+l'_vr,(k) (13)

where o, isa nxn discrete-time system matrix including
feedback gain for model.

The continuous state equation for the controlled plant can be
expressed as

5,()=4,5,(1)+ B, () (14)

where x eR", u, eR'; 4, isa nxn System matrix with
the parameter variations for plant, 5, is a »x1 control

input vector with the parameter variations for plant.
The discrete-time state equation for the controlled plant can
be expressed as

x4 )]=®, -x,()+ F, -u, (k) (13)

where .x eR” and u,eR'; &, and T, are the controlled

plant state transition and control transition matrices of
appropriate dimensions, evaluated using the following
relations:

B aehn (16)
F=(ev"-1) 4 B an

where 7, is the sampling period and I is an identity matrix.

The discrete-time control input vector{4] for the controlled
plant can be expressed as

w,(k)==K, - x (k) +ug,(k) (18)
By substituting eq.(18) into eq.(15), the discrete-time state

equation for the controlled plant including CLF can be
expressed as

%[+ D)= (B, =T, K, )5, ()4 T, -, (8) (19)
Let  &,-3,-T, -k ' 20)

The discrete-time state equation for the controlled plant
including feedback gain can be reformed as

x[(k+1)]=, x, (k) + T, -uq, (k) @n

where ®,_ isa nxn discrete-time system matrix including

CLF with the parameter variations for plant.
The error vector and the differential error vector are given

e(k)=x,(k)- x,(k) and ek +1)=x (k+1)-x,(k+1) (22)

The limits of the error vector and the differential error vector
for discrete-time are given

lime(k)=0 and lime(k+1)=0 (23)
From eq.(13), eq.(21) and €q.(23), we get

elk+1)=x_(k+1)-x (k+1)
=0, x (K)+Tr (k)= x,(k)-T, u, (k) (24)

%, (k)= e(k)+ x, (k) 25)
By substituting eq.(25) into eq.(24), we get
ek +1)=0, -e(k)+®, x,(k)+T,-r(k)

'6. 'X’(k)— l:r ’ "&\I(k)

=0, -e(k)+ [0, -8, ] x,(k)

+T, - r{k)-T, uy, () (26)
Suppose the sliding mode exists on all hyperplanes.

The sliding surface vector in the error state space can be
expressed as

(k) =G -e(k)=0 or fe(k+1))=G"-e(k+1)=0 (27)
where G7 is the sliding surface gain.

In contrast to continuous case, the discrete-time Lyapunov
function[4] can be represented by

V(s(e(k)))=.s(e(k))r -oefk))/2 (28)

The discrete-time derivative of V(.\(e(k))) is given by

V(o) = {ett)) ¥ ()
= +{{ee) oot ) -t @)
=G’ ~e(k)~[[®x_ ~1)-elk)+ [0 -8, ] 5,(6)

AT () F, -y (6)] <0 (30)

where | is an identity matrix.
From eq.(30), the control input vector with switching for the
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controlled plant can be derived

w (k) ( ~)' G {[ - 1)-elk [Ox_-&:v.]-x,(k)q-l‘_.r_(k)]

Jor G- e(k) 3D
u (k) ( ’)' G {[ @, -1]-e{k)+ [@ - ] (kT (0))
Jor G7-elk)<0 (32)

From eq.(31)-(32), the control input vector with sign function
for the controlled plant can be reformed

uZ (k) =[DSE .. - e(k) + DSP,, - x,(k) + DSU,,. (k)]

ﬂd’ign(s e(k))) (33)
where 4 is a bias gain.
DSE,. =67 F,) -G (0,.-1) (34)
is a discrete-time sliding error feedback gain.
DSP,.=(G" F,) 6" (0. - B,) G5)

is a discrete-time sliding plant feedback gain.
DSU,.. = (6" f,)" G" T, (36)
is a discrete-time sliding input gain.

The detailed block diagram of the proposed DSM-MF
including CLF in Fig. 2 can be shown as

Fig. 2 Block diagram of the proposed DSM-MF including
CLF.

4. Data analysis for DSM-MF PSS

The values of the system matrix 4, and the control vector
B_ for a continuous reference mode! under normal load
operating are given as
{—1.0]08 -3393 -01305 01057 0

0 0 ~0.108 0 0
=1-00153 20735 -01846 01495 0
-2600 0 0 =20 -2600
-78 0 0 -06 -79

B,=[0 0 0 2600 78]

The values of the system matrix @_ and the control vector
r, for a discrete-time reference mode! at sampling period
T =05 are given as

-08909 -16345 -00017 00042 -01063
00004 09720 -0.0053 00000 00003
O, =] -01529 103362 09634 00059 -01490
-24.7451 352746 00527 07010 -23.7483
-07121 10360 00015 -00087 02684

=[01085 -00004 01522 247562 0.7125]
By the pole placement, the values of the feedback gain «_
for the discrete-time reference model can be obtainded
K, =[-00062 -473148 23158 00200 ~0.4503]
The eigenvalues including CLF for discrete-time are stable
with poles at
eig(®_ ~T_- K_)=-01232,0.7419,08585,0.8483,09800

The discrete-time sliding surface vector G can be obtained
as

G=[-01 -02 -03 10 10f

5. Simulation

The simulations are carried out for a 20 sec and electrical
torque. The proposed DSM-MF PSS including CLF in Fig. 3
(b) is compared the DSM-MF without CLF in Fig. 3 (a) and is
able to achieve asymptotic tracking error between the
reference mode! state and the plant state.
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Fig. 3 Electrical torque waveforms.
6. Conclusion

The continuous sliding mode-model following(SM-MF)
power system stabilizer(PSS) including CLF is extended to
discrete-time sliding mode-model following(DSM-MF)
including CLF. Simulation results show that the proposed
DSM-MF PSS including CLF is able to achieve asymptotic
tracking error between the discrete-time reference model state
and the discrete-time controlled plant state.
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