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[Abstract]

This paper presents the proposed full-order observer-based
sliding mode power system stabilizer(FOOSMPSS) for
finding unmeasurable state variables(torque angle, quadratic-
axis transient voltage, exciter output voltage, voltage
regulator output voitage and output voltage) by measuring
angular velocity. The simulation results is shown by the
comparision of the FOOPSS with the proposed FOOSMPSS.
Keywords Full-Order Observer-based Sliding Mode
Controller, Power System Stabilizer

1. Introduction

The power system stabilizer(PSSs) has been designed to
damp out the low frequency oscillations of the power
system{I-5]. Among these methods, sliding mode control[6]
theories have been developed as a controlier which offers an
effective way of the design of transient stability controllers
for power system[7-11]. In sliding mode control(SMC) (or
VSC), the most distinct feature is existence of a sliding mode
which occurs on predetermined sliding heperplane. Once in
sliding mode, the system will be forced to slide along, or at
the vicinity of, the sliding hyperplane and hence is robust to
plant parameter variations and plant external disturbances.
This SMC theory has been applied for designing power
system stabilizers as follows : Chan and Hsu[7] have been
developed for the selection of the sliding hyperplane of SMC based
on the linear optimal control theory and applied to PSSs for single-
machine & for multi-machine, Wang, Mohlre, Spee and
Mittelstadt[8] have been applied to VSS facts controller for
power system transient stability. Kothari, Nanda and
Bhattacharya[9] have been applied for the design of SMCPSS
with desired eigenvalues in sliding mode. However, these
sliding mode controllers[6-10} applied to the power system
stabilizer(PSS) are all based on assumption that the complete
state is available for implementation of the control law. To
solve these problems of the full state feedback mentioned
above, a composite sliding mode observer(CSMQ) based on
full-order observer(FOO) for unmeasurable state variables has
been developed{11]. The aim of this CSMO based on FOO is
to achieve the stable system(only with lefi-hand poles) by
using FOO and then is to apply the SMC. In contrast to the
CSMO, this paper presents the proposed full-order observer-
based sliding mode power system stabilizen(FOOSMPSS) for
finding unmeasurable state variables(torque angle, quadratic-

axis transient voltage, exciter output voltage, voltage
regulator output voltage and output voltage) by measuring
angular velocity. This FOOSMPSS can be obtained by
combining the siiding mode control(SMC) with the full-order
observer(FOO){12-14]. The control input of the proposed
FOOSMPSS for unmeasurable state variables is derived by
Lyapunov's second method to determine a control input that
keeps the system stable.

2. Power system model

The small perturbation transfer-function block diagram of
generator system for a single machine to the infinite bus
system is shown in Fig. 1[4,9). An IEEE type-l excitation
system model has been considered which neglects saturation
of the exciter and voltage limits of amplifier output.
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Fig. 1 Linearized small perturbation model.

The differential equations of the one-machine, infinite bus
system in Fig. 1 can be written as
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; K,-X, K, K, . 1 ,
Al/,(:)=-—»—f-—»--ms(:)--—r-——AE,(:)-T-Av,‘(:)
K X <
——}f-~AVE(I)+—T‘4~u,(I) (&)
()= -Re ke K y-L.
av ()= T AE (1) T AV () T AV (6)

where

K, and K. are the constants derived from electrical torque,
K, and K, the constants derived from field voltage
equation and K, and K, the constants derived from
terminal voltage magnitude. And 1, is the voltage regulator
time constant, g the voltage regulator gain, 7, the exciter
time constant, g, the exciter constant related to self excited
field, 7, the regulator stabilizing circuit time constant, 7
the d-axis transient open circuit time constant and H the
inertia moment coefficient. And «, is the supplementary
excitation control input.

The 6-th order state variables can be expressed as

*()=[s() a8() aE() AE,() aV() av()] U]

where Aw(r) is the angular velocity, As(r) the torque angle,
AE,() the quadratic-axis transient voltage, AE,{1) the
exciter output voltage, a¥,{r) the voltage regulator output

voltage and AV, (1) the output voltage.

3. A FOOSM controller

The state equation for full-state feedback and the output
equation can be expressed as

i'(l)= A ~x(l) +B- u(l) (8)
Hy=C-x(r) 9)

where .4 is the system matrix with the parameter variations,
B the control matrix with the parameter variations and C
the mxnoutput matrix. And xeR" the state vector,
ueR" the control input vector and yeR’ the output state
vector.

The full-order observer state equation for unmeasurable state
variables[12,13,14] can be expressed as

}(t) =A4-5(1)+B-u(t)+ L (,\(l) -C- i(l))

=(4-L-C)-x(1)+ B ult)+ L-y{)) (10)

where L=p.C".R" (11)
isthe nxm output injection matrix.

P is the symmetric positive definite solution of

A-P+P. A" =P.C"-R"-C-P+Q=0 (12)
@ and p are positive definite matrices chosen by the
designer. And ;cp- is the estimated state. From eq.(10),
the following assumptions are made :

(4.B) is controllable and {4,C) is observable.

Suppose the sliding mode exists on all hyperplanes. The
sliding surface vector and the differential sliding surface

vector for unmeasurable state variables can be expressed as

o-(i(l)): G- i{r) 13)
o{3())=6"-x(1) (14
where G is the sliding surface gain.

To determine a control law that keeps the system stable, we
introduce the Lyapunov’s function

r{E0)= o (¥())/ 2 (15)

The time derivative of V(i(:)) for unmeasurable state

variables can be expressed as

v (i(/))= o-(i(l)) o‘(i(l)) (16)
=G"-:(1)-G" i(l)
=G"-i(t)-G’ [(A =L-C)-x()+ Bug ()+ L ~y(l)]
<0 17

where u,, is the sliding mode control input vector.

From eq. (17), the control input for unmeasurable state
variables with switching can be derived as follow:

Upe()2~(G7 - B)" 07 [~ L-C]- 2167 - L5()]

Jor G' -i(l)>0 (18)
Hoe ()$~(G7 - B)"-[G7 [ 4= L-C]- 2(}+G" - L 3(1)]
Jor G’-i(l)<0 (19)

Finally, from eq.(18) and eq.(19), the control input of the
proposed FOOSMC for unmeasurable state variables with
sign function can be reformed

wi=~G"-B)"[6" [4-L-C]-3()+ G- L-¥{)]

-sign(o(i(l))) (20)
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Fig. 2 Block diagram of the proposed FOOSMC.
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The overall block diagram in Fig. 2 represents the proposed
full-order observer-based sliding mode controller(FOOSMC)
for unmeasurable state variables.

The algorithm for realization of FOOSMC can be summarized as

follows:

(1) Choose the equation of hyperplane to be of the form

a-(}(l)) =0.

(2) Compute the estimated control input with the sign function

for a sliding mode.
(3) Apply the controlled plant.

4. Data analysis of the FOCSMPSS

Norminal parameters of the system for the initial d-q axis
current and voltage components and torque angle needed for
evaluating the K constants are as follows :

v, =08211 pua [I_=08496 p.u

E,=08427 pu V,_ =05708 pu

1,=05297 pu V, =10585 pu

8, =7140°

The K, -~ K, values under normal load operation are given as
K1=11584 K2=14347 K3=03600

K4=18364 K5=-01113 K6=03171 .

And the values of 4, B and C under normal load operation
condition are given by

0 -01158 -0.1435 0 0 0
314159 0 0 0 0 0
e 0 -03061 -04630 0.1667 0 0
0 0 0 01 2 0
0 11133 -317.11 0 -20 ~1000
0 0 0 001 02 -2

B=[0 0 0 0 1000 O]
If the desired pole
-80, -85, -90, -95 -100, the sliding surface vector can
be obtained

c=[xooooo]

G=[-82146276 188818 2647961 -32674 10 539925]
The output injection vector L can be obtained
L=10e-008-[0000 -0058 0020 -0694 -9504 -0100]

5. Simulation studies

Simulation study is carried out to evaluate the performance
of the proposed FOOSMPSS for a 5 sec.
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Fig. 3 Angular velocity waveforms under normal load.

Under normal load condition, a 0.02{p.u] initial condition of
input torque reference is applied. The dynamic simulation
results in Fig. 3 are shown by the comparision of the FOOPSS

locations are set to

with the proposed FOOSMPSS under normal load operation.
It can be clearly seen that the responses obtained with
FOOSMPSS under normal load operation are well damped.

6. Conclusion

A full-order observer-based sliding mode power system
stabilizer(FOOSMPSS) for unmeasurable state variables has
been proposed. The simulation result has been shown by the
comparision of the FOOPSS with the proposed FOOSMPSS
under normal load operation.
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