Speech Feature Extraction Based on the Human Hearing Model

  • 발행 : 1996.10.01

초록

In this paper, we propose the method that extracts the speech feature using the hearing model through signal processing techniques. The proposed method includes the following procedure ; normalization of the short-time speech block by its maximum value, multi-resolution analysis using the discrete wavelet transformation and re-synthesize using the discrete inverse wavelet transformation, differentiation after analysis and synthesis, full wave rectification and integration. In order to verify the performance of the proposed speech feature in the speech recognition task, korean digit recognition experiments were carried out using both the DTW and the VQ-HMM. The results showed that, in the case of using DTW, the recognition rates were 99.79% and 90.33% for speaker-dependent and speaker-independent task respectively and, in the case of using VQ-HMM, the rate were 96.5% and 81.5% respectively. And it indicates that the proposed speech feature has the potential for use as a simple and efficient feature for recognition task

키워드