Both ⁴⁵Ca²⁺ Uptake and ⁴⁵Ca²⁺ Release were Decreased in the Junctional Sarcoplasmic Reticulum Vesicles of Diabetic Heart Won-Tae Kim, Kwang-Hyun Cho, Hae Won Kim¹, and Young-Kee Kim Dept. of Agric. Chem., Chungbuk Nat'l University, Cheongju, and ¹Dept. of Pharmacol. University of Ulsan Coll. of Medicine, Seoul. Abnormally high Ca²⁺ concentrations have been reported in the cardiac myocytes of diabetic mellitus (DM). In order to elucidate the molecular mechanisms of the intracellular Ca²⁺ overload, the activities of ⁴⁵Ca²⁺ uptake and ⁴⁵Ca²⁺ release were measured from the vesicles of junctional SR (Heavy SR, HSR). Streptozotosininduced diabetic rats were prepared and HSR vesicles were isolated from the ventricular myocytes. The pattern of SR ⁴⁵Ca²⁺ uptake in various preparations are following; the uptake was 6.7 pmol/ μ g protein in the HSR vesicles of control heart, 3.9 pmol/ μ g protein in DM heart, and 4.8 pmol/ μ g protein in the insulin-treated DM heart. SR ⁴⁵Ca²⁺ uptake matched with the activity of SR Ca²⁺-ATPase. The activity of SR Ca²⁺-ATPase was 562±7 nmol/min/mg protein in the HSR vesicles of control rat. The activity decreased to 353 ± 8 (\sim 60% of control) in the DM heart and it was recovered to 427 ± 16 (~75% of control) in the insulin-treated DM heart. A similar pattern of ⁴⁵Ca²⁺ release in the presence of thapsigargin, a specific antagonist of SR Ca2+-ATPase, was also observed. The highest release of 45% was observed in the HSR vesicles of the control heart. The release in the DM heart was 23.8% and it was 28.1% in the insulin-treated DM heart. In conclusion, the activities of both SR Ca²⁺-ATPase and SR Ca²⁺ release channel (ryanodine receptor) were decreased in the diabetic cardiomyopathy.