NMR Studies on the Structure of Human Annexin I Hee-Yong Han[°], Keun-Su Bang, Doe-Sun Na¹ and Bong-Jin Lee College of Pharmacy, Seoul National University, Seoul College of Medicine, University of Ulsan¹, Seoul is a member of the annexin family of calcium Annexin I dependent phospholipid binding proteins anti-inflammatory activity by inhibiting phospholipase A₂ (PLA₂). Recent X-ray crystallographic study of annexin I identified six Ca²⁺ binding sites, which was different types (type II, III) from the well-known EF-hand motif (type I). In this work, the structure of annexin I was studied at atomic level by using 1H. ¹⁵N and ¹³C NMR (nuclear magnetic resonance) spectroscopy, and the effect of Ca²⁺ binding on the structure of annexin I was studied, and compared with that of Mg²⁺ binding. When Ca²⁺ was added to annexin I. NMR peak change was occured in highand low-field regions of ¹H-NMR spectra. NMR peak change by Ca²⁺ binding was different from that by Mg²⁺ binding. Because annexin I is a larger protein with 35 kDa molecular weight, site-specific (amide-15N, carbonyl-13C) labeling technique was also used. We were able to detect methionine, tyrosine and phenylalanine peaks respectively in ¹³C-NMR spectra, and each residue was able to be assigned by the method of doubly labeling annexin I with [13C]carbonyl-amino acid and [15N]amide-amino acid. In ¹³C-NMR spectra of [¹³C]carbonyl-Tyr, Phe labeled annexin I, we observed that some Tyr and Phe resonances were effected by Ca²⁺ binding. We expect that the anti-inflammatory action mechanism of annexin I may be a specific protein-protein interaction. The residues involved in the interaction with PLA₂ can be identified as active site by assigning NMR peaks effected by PLA₂ binding.