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1. Introduction

A common finding in airway diseases is a disturbance of the
normal mucociliary clearance due to a hyperproduction of mucus and a
modification in its physicochemical characteristics. Drugs active on
airway secretion have been proposed and used to cleanse and clear the
respiratory tract for many centuries and in many countries. On the basis
of the mechanism of the action, the mucoactive drugs were classified
into several groups [1]. Some mucoactive drugs possess direct effects on
the production of airway secretions or on changes in their composition,
resulting in increased effectiveness of mucociliary clearance. Other
mucoactive drugs do not have a specific action on mucus, but produce a
general benefit on airway structure and function, which secondarily lead
to correction of the pathophysiologic mechanisms that result in
abnormal secretions. However, since many drugs have overlapping
effects, it is difficult to simply classify these drugs into some groups
based on their major actions. For example, it is well known that
ambroxol stimulates the formation and release of pulmonary surfactant
by alveolar type II cells [2]. However, recent reports indicated that
ambroxol as well as N-acetyl-L-cysteine and carboxymethylcysteine
could sufficiently enhance the antioxidant defense mechanisms in Ilung
tissues and could act as lung lipid antioxidants. [3-9]. In addition,
ambroxol inhibited the chemotactic response and spontancous migration
of human polymorphonuclear leukocytes (PMNLs) [10-12], and
attenuated the production of interleukin-1 and tumor necrosis factor by
human mononuclear cells [13]. In in vivo studies, ambroxol diminished
the bleomycin-induced lung injury in rats [14], and decreased their
mortality after an administration of paraquat, a herbicide that generates
reactive oxygen species [15]. Accordingly, ambroxol as a mucoactive
drug fundamentally has an anti-inflammatory action. Taken together
with previous findings of mucoactive drugs, it seems to us that the anti-
oxidant effect, as a crucial action to exert their effects against airway
diseases, is a common property in mucoactive drugs. In the light of this
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idea, we must use specific experimental models to simulate
pharmacological events in airway inflammation. Nowadays, the
development of new techniques has made it possible to identify and
measure the mucus components, to measure the rheological parameters
more accurately, and to evaluate mucociliary clearance precisely in
animals and humans. Therefore, from various points of view, we have
evaluated mucoactive drugs with modifications of methodological
approaches to reflect actions in inflammatory states for two decades. We
will introduce here our overall methods to study many parameters
involved in airway clearance, and some mucoactive drugs we have
studied recently.

2. Screening systems for mucoactive drugs
2.1. in vivo screening systems for airway secretion in inflammation
There are several reports on experimental models of airway
inflammation. Of the reports, we used a SO,-exposed model as an in
vivo screening system for airway secretion in inflammation, because
SO, mainly causes airway epithelial damages like features of bronchitis.
There are two convenient methods to study airway secretion; the Perry
and Boyd method and broncho-alveolar lavage method. ‘
The Perry and Boyd method has been used extensively to study
the effects of sympathetic or parasympathetic agents and the effects of
many kinds of mucoactive drugs. In our previous studies, the mucus
production of rabbits with subacute bronchitis induced by a long-term
exposure (5 weeks to 3 months) to SO, (50 to 300 ppm) has been
determined with this method. We determined sugar, protein and
phospholipid contents in airway secretions from normal and bronchitic
rabbits and evaluated many mucoactive drugs on airway secretion [16-
21]. The majority of sugars in mucins are composed of fucose,
galactose, N-acetylgalactosamine, N-acetylglucosamine and N-
acetylneuraminic acid. We found that the sugars were increased in
airway secretions of SO,-exposed rabbits. Especially, the increases of
galactose and N-acetylglucosamine suggest that airway secretions from
SO,-exposed rabbits are composed of long chains of sugars in mucins,
resulting in viscous property of the secretions similar to the sputa from
bronchitic patients. The reason is that these two sugars are major
components of elongated sugars in mucins, which is based on sugar
structure of mucin.

Broncho-alveolar lavage methods were also applied to study
airway secretions. The merit of this method is to collect many
components enough amount to study in detail. For example, we
examined an influence of long term exposure to SO, on the pulmonary
surfactant by the method. [22]. Recently, in order to investigate mucin
production in pathological states, we made monoclonal antibodies (4H6,
2D11) against the mucins from broncho-alveolar lavages of hamsters
with  bronchitis caused by SO, exposure [23]. In the
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immunohistochemical studies, the antibodies recognized the mucins
secreted into lumen, but not the mucins stored in goblet cells nor
submucosal gland mucous cells. The ELISA has shown that the
antibodies react with some mucins from hamster intestine and swine
stomach, and broncho-alveolar lavages of rats, guinea-pigs, dogs and
human. However, the antibodies did not recognize bovine submaxillary
gland mucins nor proteoglycans. Therefore, the ELISA using the
antibodies could be available to quantify airway mucin production in
future mucoactive drugs screening.

2.2. in vitro screening systems for airway secretion in inflammation

For drug evaluation, we used two kinds of in vitro models to
evaluate mucoactive drugs. To investigate mucus secretions as a major
component of gel layer of airway secretions, we have used culture
systems of hamster tracheal epithelial cells or human pulmonary
mucoepidermoid carcinoma cell lines (NCI-H292). To investigate
pulmonary surfactant as a major component of sol layer, we have used
primary culture of rat alveolar type II cells.

Kim et al. have reported that hamster tracheal epithelial cells in
culture are morphologically and biochemically similar to goblet cells
[24, 25]. Using this system, it has been reported that the secretion of
high molecular weight glycoconjugates (HMWG), a marker of mucus, is
influenced not by pharmacological agents such as acetylcholine and
histamine, but by alteration of medium pH, cationic proteases, alteration
of medium osmolarity, mechanical strain of cells and ATP [26-30]. We
also found that protein kinase C was involved in HMWG secretion in
hamster tracheal epithelial cells in culture [31]. Recently, we have found
that adrenergic agonists suppresssd HMWG secretion in hamster
tracheal epithelial cells.

To simulate the inflammatory states, we have used co-culture
systems of mucus cells with polymorphonuclear leukocytes (FMNLs)
activated by several stimuli [32, 33]. Abnormal and excessive mucus
secretion is a characteristic feature of many chronic inflammatory lung
diseases accompanied by the influx of PMNLS into the airway and by the
release of substance P from the peripheral endings of primary sensory
neurons. We examined whether PMNLs activated by substance P (10
uM) can affect the secretion of HMWG from cultured hamster tracheal
epithelial cells. We measured both the released and the cell-associated
HMWG. Substance P-activated PMNLs (10° cells/ml) reduced the
amount of cell-associated HMWG to 76% of the control level, but did
not affect the amount of the released HMWG. The reduction of the
amount of cell-associated HMWG was inhibited by ONO-5046, a
specific elastase inhibitor. In addition, the HMWG was digested by the
activated PMNLSs. These findings suggested that substance P stimulated
the release of the cell-associated HMWG and degraded the released
HMWG from cultured hamster tracheal epithelial cells through PMNLSs
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activation. As suggested in many reports, we indicated that neutrophil
elastase may be a crucial mediator to induce mucus secretion in
inflammation.

Pulmonary surfactant, which is composed of phospholipids and
apoproteins and is mainly produced in alveolar type II cells, lowers the
surface tension at the air-liquid interface in the lung and provides for
alveolar stability. De Sanctis clearly demonstrated that, in addition to the
vital role, surfactants are also important in airway mucociliary
clearance [34]. Several studies have suggested that the presence of
phospholipids in the airways may modify the clearance of mucus [35-
40]. The existence of surfactant films has been demonstrated in the
airways of several species by electron microscopy [37, 41], and by in
situ surface tension measurement [37, 42]. We also confirmed a
protective effect of surface active phospholipids on an acid-inducing
inhibition of mucociliary transport in pigeons [43].

Taken together with many reports on pulmonary surfactant in
mucociliary clearance, it is reasonable to study the effects of mucoactive
drugs on pulmonary surfactant secretion in alveolar type II cells.
Secretion of phosphatidylcholine, a major surfactant phospholipid, has
been shown to be influenced by a variety of physiological and.
pharmacological agents in alveolar type II cells [44, 45]. We also found
that both B,- and B,-adrenoceptor subtypes mediated phosphatidylcholine
secretion [46] and confirmed that both B,- and B,-adrenoceptor genes
were expressed in rat alveolar type II cells [47].

To simulate inflammation states, we have used co-culture
systems of alveolar type II cells with activated PMNLSs or eosinophils
[48, 49]. Activated PMNLs and eosinophils in airway epithelium are
thought to be involved in the pathogenesis of many airway diseases.
PMNLs or eosinophils activated by opsonized zymosan caused a
significant increase in phosphatidylcholine secretion. Pretreatment of the
culture with the combination of superoxide dismutase and catalase
reduced the increase in phosphatidylcholine secretion. These results
suggested that activated PMNLs and eosinophils stimulated the secretion
of pulmonary surfactant, and that the stimulation was partly mediated by
oxygen radicals. These systems may be useful to assay the anti-oxidant
effects of mucoactive drugs.

2.3. Mucociliary transport in inflammation

Mucociliary clearance is an important pulmonary defense
mechanism that serves to remove inhaled substances from the lung [50].
The mucociliary function is depressed by a variety of water-soluble
atmospheric pollutants such as SO, and NO, [S0]. The techniques for in
vivo measurement of mucus transport rates involve the placement of an
optically, radiographically, or scintigraphically detectable solid or liquid
marker on the mucosa [51].
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To simulate inflammatory states, we have used pigeons and quails
for the evaluation of drugs on mucociliary transport. A major reason
for the use of birds is based on histological findings and biochemical
study of broncho-alveolar lavages. The histological features are similar
to airway inflammation states. There are many proliferated goblet cells
and submucosal glands in tracheal epithelium. Furthermore, in broncho-
alveolar lavages of birds, extremely higher content of fucose, a typical
sugar in mucins was found. So far, we examined the effects of many
mucoactive drugs on mucociliary clearance in birds [16, 20, 43, 52-58].
For example, we found that inhalation of bromhexine, classified as a
mucolytic agent, increased mucociliary transport in quails. Recently, we
investigated the effect of leukotriene D, (LTD,) on mucociliary
transport in quails [59]. Topical application of LTD, (0.2 - 2 ng) to
tracheal mucosa dose-dependently increased mucociliary transport 5 or
10 min after the application. Forty minutes after the application of 2 ng
of LTD,, mucociliary transport was decreased to about 84% of that in
the control group. Both the transient increase and the subsequent
decrease were blocked by ONO-1078 (0.03 - 3 mg/kg, i.m.), a specific
LTD, receptor antagonist. These results suggested that LTD, possessed
a biphasic effect on tracheal mucociliary transport through leukotriene
receptors. Moreover, we found that topical application of histamine (1
pmol) to tracheal mucosa prominently decreased mucociliary transport
5 or 10 min after the application. The inhibitory effect was restored by
the anti-allergic drug.

In preliminary experiments, we found that sphingomyelin-rich
lipid fractions from sputa suppressed mucociliary transport in trachea.
Although the mechanism of action remains unclear, the finding suggests
that we have to consider composition of phospholipids in sputa as
inhibitory factors of mucociliary clearance.

3. Current mucoactive drugs

We have evaluated several mucoactive drugs for two decades. Of
the drugs, we will introduce here the following drugs with anti-
inflammatory properties: sodium aceneuramate, glucocorticoids,
Chinese traditional medicines, new cysteine derivatives.

3.1. Sodium aceneuramate (N-acetylneuraminic acid (NANA) sodium
salt)

Although participation of sialic acids, mainly NANA, in many
biological and pathological processes has been well documented [60],
there are only a few studies concerning the significance of the sialic acid
in the airway [61]. We found that the sputa of bronchitic rabbits
contained much higher levels of both free and bound NANA than the
airway secretions of normal rabbits by a selected ion monitoring
technique [62, 63]. According to our preliminary experiments, NANA
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concentrations in the sputa of patients with chronic bronchitis (free, 15-
204 pg/ml; bound, 276-1298 pg/ml) were also apparently higher than
those in the broncho-alveolar lavages of healthy subjects. In addition, we
have reported that inhalation of NANA repaired inflammation in the
airway, resulting in bronchitic rabbits to produce sputa with low
viscosity like normal airway secretions (21, 63]. Further, NANA, but
not lactose, dose-dependently protected the mucociliary transport
impaired by cigarette smoke [55]. The results suggest that NANA may
participate the defense mechanism in the airway against irritant gases. In
addition, we studied the in-vivo anti-allergic effect of NANA in guinea-
pigs passively sensitized with anti-ovalbumin rabbit serum [64]. NANA
inhibited bronchial anaphylaxis and the release of histamine into
broncho-alveolar lavages. NANA dose-dependently  attenuated
heterologous passive cutaneous anaphylaxis and hemorrhaging in the
passive Arthus reaction. Interestingly, NANA did not inhibit the release
of histamine from sensitized minced lung tissues in vitro. The clinical
observations [65, 66] that NANA (sodium aceneuramate) is an effective
inhalant expectorant seems to support our findings. We administered
sodium aceneuramate (2 mg, twice a day for 7 days) by inhalation to 10
patients with bronchiectasis, chronic bronchitis, diffuse panbronchiolitis.
and other respiratory diseases that cause sputa [66]. We found that
sodium aceneuramate improved subjective symptoms, such as the
number of expectoration of sputa, and sticking sensation of sputa. The
viscosity of sputa was increased in 4 patients and the ratio of disaturated
phosphatidylcholine (DSPC)/phosphatidylcholine (PC) was increased in
5 patients but protein contents were decreased in 4 patients whose
subjective symptoms were improved. Sodium aceneuramate did not
cause any side effects and any abnormal laboratory findings. Therefore,
it was possible that sodium aceneuramate improved the subjective
respiratory symptoms due to sputa.

3.2. Glucocorticoids

Glucocorticoids are first-choice drugs in the management of
the inflammatory process seen in asthma. Although current
pharmacological approaches to airway mucus production are limited,
glucocorticoids seem to be the most effective among a few useful drugs.
However, there are a few studies documenting the benefits of
glucocorticoid therapy on the mucociliary clearance and the excessive
production of airway mucus. Systemic glucocorticoids ameliorated
bronchial obstruction and facilitated expectoration in patients with
asthma and chronic bronchitis, although they did not alter sputum
viscosity [67]. Direct exposure of the bronchial mucosa to prednisolone
resulted in mild cilioexcitation [68], whereas the topical beclomethasone
had no effect on mucociliary transport in conscious sheep [67]. Thus, the
contribution of glucocorticoids to mucociliary transport remains
unclear. We previously examined the effect of corticosterone on
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tracheal mucociliary transport in pigeons [57]. Corticosterone (5.0
mg/kg) significantly increased the mucociliary transport rate.
Metyrapone, an adrenal 11-B steroid hydroxylase inhibitor, significantly
decreased the mucociliary transport rate, and the inhibitory action was
blocked by 1.0 mg/kg of corticosterone. The findings suggested that
glucocorticoids modulated the mucociliary clearance, especially under
some diseases associated with a decreased level of endogenous
corticosteroids.

As for effects on mucus production, several reports have
shown that glucocorticoids directly reduce submucosal gland secretions
[69-72] without a significant alteration in the synthesis of mucins [71].
Recently we tried to clarify the effect of dexamethasone on mucus
production and mucin gene expression in a human pulmonary
mucoepidermoid carcinoma cell line (NCI-H292). Dexamethasone (10
- 10° M) significantly suppressed the basal production of
[H]glucosamine- or [*H]serine-labeled HMWG in NCI-H292 cells. To
examine the effect on mucin gene expression, we have selected MUC-2
and MUC-5 out of eight mucin genes (MUC-1 - MUC-8) [73-85],
because MUC-2 was expressed in the airways of patients with
inflammatory airway disorders, such as cystic fibrosis and chronic
bronchitis [86-89], and because MUC-5 was cloned from the human
airway [82]. In Northern blot analysis, dexamethasone (10° - 107 M)
attenuated steady-state mRNA levels of MUC-2 and MUC-5 mucin
genes. Thus, we concluded that dexamethasone suppressed the basal
production of HMWG and decreased steady-state mRNA levels of mucin
genes in airway mucus-producing cancer cells.

3.3. Chinese traditional medicines
There is an increasing usage of Chinese traditional herbal
medicines in clinics and hospitals, because the Chinese medicines tend to
have moderate side effects and sometimes produce remarkable efficacy.
In order to renormalize overall defects in airway disorders, Chinese
medicines may be adequate drugs, because the medicines are composed
of various herbs with weak, but ubiquitous pharmacological activities.
Qing-Fei-Tang, consisting of 16 herbs, was described in ‘Wang
Bin Hui Chun,” the medical literature published in 1587 in China. Qing-
Fei-Tang has been clinically applied to treat chronic obstructive
pulmonary diseases with severe cough and sputum. Qing-Fei-Tang was
also effective for the treatment of the bronchitis with an asthmatic
attack-like symptom [90]. In this patient, the abnormally elevated
chemiluminescence of oxygen radicals in leukocytes was normalized as
symptoms improved through 5 weeks' administration of Qing-Fei-Tang.
Our previous study showed that Qing-Fei-Tang inhibited the release of
slow reacting substance of anaphylaxis from passively sensitized guinea-
pig lung after antigen challenge [91]. Qing-Fei-Tang also suppressed the
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chemiluminescence of oxygen radicals, when healthy human leukocytes
were stimulated by opsonized zymosan. In normal rabbits, Qing-Fei-
Tang increased the output volume and fatty acid contents in airway
secretions. In the bronchitic rabbits, 6 weeks' administration of Qing-
Fei-Tang restored the decreased amount of saturated fatty acid in the
sputa, and histological examinations revealed an amelioration of the
inflammation of lung tissues. In pigeons, Qing-Fei-Tang facilitated
tracheal mucociliary transport. Accordingly, Qing-Fei-Tang seems to
exert effectiveness via its multiple mechanisms.

_ As another Chinese traditional medicine, we have investigated
Mai-men-Dong-Tang, consisting of 6 herbs, Ophiopogonis Tuber,
Pinelliae Tuber, Zizyphi Fructus, Glycyrrhizae Radix, Ginseng Radix
and Oryzae Fructus. Mai-men-Dong-Tang has been used for the
treatment of bronchitis and pharyngitis accompanying severe dry cough.
We found that unlike codeine, Mai-men-Dong-Tang had a notable
antitussive activity against the cough associated with bronchitis and the
cough increased by angiotensin-converting enzyme inhibitors [92].
Recently, we found that in alveolar type II cells, Mai-men-Dong-Tang
attenuated phosphatidylcholine secretion increased by oxygen radicals
from activated PMNLs. In addition, we found that Mai-men-Dong-Tang
by itself slightly stimulated phosphatidylcholine secretion and increased
B,-adrenoceptor gene expression in rat alveolar type II cells. Although
the mechanism of action remains unclear, the effect may contribute to
the effectiveness on chronic airway diseases.

3.4. New cysteine derivatives

We are developing a new cysteine derivative, S-(3-
hydroxypropyl)-L-cysteine (SS320A), as a new mucoactive drug [93]. In
rabbits, SS320A significantly increased pulmonary secretion of the
marker dye, indicating bronchosecretagogue activity. In addition,
SS320A increased the volume of airway secretions in normal rabbits
collected by the Perry and Boyd method. SS320A (102 M) did not
influence the rheological properties of the pig gastric mucin in vitro.
SS320A (500 mg/kg/day, p.o., 2 weeks) restored the decreased content
of free sialic acid in broncho-alveolar lavages in bronchitic animals
made by long term SO, exposure. SS320A inhibited the hyperplasia of
goblet cells in airway epithelium caused by isoproterenol (0.05 mg/kg,
i.p.). SS320A (500 mg/kg, p.o.) did not affect the normal tracheal
mucociliary transport in quails, while inhalation of SS320A dose-
dependently restored the mucociliary transport impaired by a cigarette
smoke exposure. The results suggest that SS320A possesses mucoactive
and mucoregulatory activity.

Erdosteine, dl-S-{2[N-3-(2-oxotetrahydrothienyl)acetamine]}
thioglycolic acid (under development in Japan as KW-9144) is a novel
thiol derivative endowed with mucolytic, mucomodulatory and free
radical scavenging properties, and without gastric adverse effects unlike
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other cysteine derivatives [94]. We found that erdosteine (600 mg/kg,
p.o.) significantly promoted mucociliary transport in quails and
suppressed capsaicin-induced cough reflex [95].

Several studies reported two new cysteine derivatives, S-
carboxymethylcysteine-lysine salt [96, 97], N-acetylcysteine L-lysinate
(Nacystelyn) [98], for water-soluble pharmaceutical forms. Thanks to
the lysine, the compounds are better tolerated by the gastroenteric tract
than other mucoactive drugs. This allows the administration of the drug
at higher doses, resulting in more effectiveness of the drugs in clinic.
We also are investigating the cysteine derivatives in our systems.

4. Future directions

Various parameters (chemical properties, physical properties,
mucus production, surfactant phospholipids production, and mucociliary
clearance) are considered to be important for the dynamics and the
mobilization of airway secretions. Pharmacological investigation with
appropriate techniques on the ability of an agent to modify these
parameters can give us useful information about its mechanism of
action. However, since these parameters are strictly interconnected, it is
so complicated to understand the mechanism of action of mucoactive
drugs. This means that the final aims, the reduction and the control of
the obstructive symptoms, cannot always be achieved by the
modification of a single parameter, but should more realistically be
attributed to a general renormalization of several parameters. On the
basis of this idea, it will be taken for granted that glucocorticoids are
ideal mucoactive drugs, because glucocorticoids possess various
pharmacological effects in the lung. From polypharmacological points
of view, Chinese traditional medicines may belong to glucocorticoid-like
drugs because Chinese medicines consist of many kinds of active
components that have various pharmacological effects.
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