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ABSTRACT

In a remarkable paper 3], Hammons et al. showed that, when properly defined, the
binary nonlinear Preparata code can be considered as the Gray map of a linear code
over Z;, the so-called Preparata code over Z;. Recently, Yang and Helleseth [12]
considered the generalized Hamming weights d.(m) for Preparata codes of length 2™
over Z,4 and exactly determined d, for r = 0.5,1.0,1.5,2,2.5 and 3.0. In particular,
they completely determined d,.(m) for any r in the case of m < 6. In this paper
we show that the Prépa.rata code of length 16 over Z; does not satisfy the chain
condition.
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I. INTRODUCTION

Let Z; be the ring of integers modulo {. A linear code C over Z; with blocklength n is an additive
subgroup of Z7. The Lee weights of the elements 0,1,2,3 in Z; are 0,1, 2,1, respectively. The
Lee weight of a vector @ € Z} is defined to be the sum of the Lee weights of its components.
The Gray map ¢ : Z4 — Z2 is defined by ¢(0) = 00, #(1) = 01, ¢(2) = 11, and ¢(3) = 10.
In general, the binary code defined by C = ¢{(C) is a nonlinear binary code of length 2n.
Hammons, Kumar, Calderbank, Sloane and Solé (3] have shown that efficient nonlinear codes

1This work was supported in part by the Korean Ministry of Information and Communications.
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such as Kerdock, Preparata, etc., can be very simply constructed as binary images under the
Gray map of linear codes over Z..

Let p: Z4 — Z; denote the modulo 2 reduction map. We extend u to Z,[z] in the natural
way. A monic polynomial g(z) € Zs[z] is said to be monic basic irreducible if u(g(z)) is a
monic irreducible polynomial in Z,[z]. A Galois ring R., = GR(4,m) of characteristic 4 with
4™ elements is isomorphic to the ring Z4[z]/(f(z)), where f(z) is a monic basic irreducible of
degree m. In other words, R, is an extension of Z, of degree m. R, is a local ring having a
unique maximal ideal M = 2R,.. Clearly, ¢ has a natural extension to R[z] and the quotient
ring u(Rn) = Rm/M is isomorphic to Fym where Fym is a finite field with 2™ elements (see [3],
[6] for details).

As a multiplicative group, the set R, of units of R, has the following structure

R;2Z2m_1><Z2><Zg><megl.

m times

Let 3 € R}, be a generator for the multiplicative cyclic subgroup = Zym_; contained within R},.
Let T, = {0,1,8,...,8%""2}. It can be shown that every element z € R,, can be expressed
uniquely as

2= A+2B, A,B€ Tn. (1)

It can be also shown that & = # (mod 2) is a primitive element in Fym, thus pu(7) = Fam.
Let P,, be the code over Z,, whose parity-check matrix is given by

i1

H=
018 B ... g2 2)

The quaternary code P,, is called the Preparata code of length 2™ over Z;. In Hammons,
Kumar, Calderbank, Sloane and Solé [3], it is shown that if m is odd, then P,, has minimum
Lee weight 6 and its Gray map P, = ¢(Pn) gives a (2™1!,22™*'~2m~2 6) binary nonlinear
code and so it is optimal. If m is even, then P, has minimum Lee weight 4 and its Gray map
Pn = &(Pn) gives a (2m+1,2277~2m=2 4) binary nonlinear code. Note that the dual of the
Preparata code P, over Z4 is the Kerdock code K,, over Z,.

In this paper, we consider the chain condition for the Preparata code P, of length 16 over
Z4. The weight hierarchy of Ps is completely known in [1], and it is well-known that P; satisfies
the chain condition. The weight hierarchy of P; is also completely known in [12]. In this paper,
we show that P, does not satisfy the chain condition.

The paper is organized as follows. In Section II, preliminaries are given including several
lemmas. The concepts of generalized Hamming weights, weight hierarchy, and chain condition
are introduced in Section III. In Section IV, we show that Pj satisfy the chain condition, but

P, does not satisfy the chain condition. Finally, we give concluding remarks in Section V.
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II. PRELIMINARIES AND NOTATION

From now on, we will normally use the capital letters X,Y, A, B, etc., to denote elements in
Tm, and the small letters z,y, a, b to represent their corresponding projections modulo 2 in Fym.
For example, we use a = p(A), z; = p(X;) € Fom for A, X; € Tn, respectively. For a vector
¢ € Z}, denote its Hamming weight and Lee weight by wg(c) and wy(c), respectively.

The module D over Z,, generated by ¢1,¢3,...¢, € Z7, is denoted by D =< ¢;,¢C3,...c, >.
Two codes C; and C; of length n are equivalent if there is a permutation o on {1,2,...,n} such
that

C=A{o(c)|c e}

where 0(c1,€3,..+,6a) = (€o(1) Co(2)> - - -3 Ca(n))-
Let {cx)xe7,. be a codeword of the Preparata code P,,. Then it must satisfy

Z cx =0

X€Tm

and

E exX =0.
X€Tm

These relations give an invariant property to Py,.

Lemma 1 ([3]) The Preparata code defined in (2) is invariant under the doubly transitive group
of "affine” permutations of the form

X = (AX + B)™
where A,B€ T,, and A # 0.

Since any element in R, can be uniquely represented as in (1), it is very natural to consider
addition of elements in T,,. A very useful lemma for adding the elements in 7, is in the

following,.

Lemma 2 ({4]) Let X1, X,,..., Xk € Tra. Then

k
S Xi=A+2B, ABeT,

i=1

where X
A=Y Xi+2 Y /XX;
i=1 1<i<j<k
and
B="Y JXiX; (mod?2).
1<icigk
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The next lemma shows how an equation over R,, can be represented as two equivalent
equations over Fom.

Lemma 3 ([4]) Let e = (ex)zet, and let E; = {X |ex = 3} for 1 = 0,1,2,3. The equation
given by

Z exX =A+2B, A,B,€Tn,ex € Z4
X€Tm

is equivalent to the two binary equations

b = Z z? + Z zy

X€FUE; X,YEE{UE3
X<Y

where < is any ordering of the elements in T,.

I1I. GENERALIZED HAMMING WEIGHTS OF A LINEAR CODE OVER 7,4

Wei [9] introduced the notion of generalized Hamming weights and weight hierarchy for linear
codes and showed that the weight hierarchy of a linear code characterizes its performance on
the wire-tap channel of type II. It is possible to extend his concepts to linear codes over Z,.
Ashikhmin [1] showed that the weight hierarchy of a linear code over Z; also characterizes its
performance on the wire-tap channel of type II

Let C be an [n, k] linear code over Z,, and let B C C be a subcode. Then the support of B
is defined as follows:

x(B) = {i| ¢ # 0 for some (cq,...,c,) € B}.

For any r, where 0 < r < k and 2r is an integer, the rth generalized Hamming weight of C is
defined as

d-(C) := min{|x(B)| : B is a submodule of C with |B| = 4"}.

Conventionally, dy is assumed to be 0. The weight hierarchy of C is the sequence given by
{d.(C)}*_, 5, where 2r is an integer.

There are numerous recent results on the generalized Hamming weights for codes over a finite
field, in particular, for binary codes (see [8] for a survey of recent results). However, for codes
over Z, very little is known. Ashikhmin [1] presented the duality theorem on the generalized
Hamming weight d, for linear codes over Z,, and determined dps and d; for the Kerdock code
of length 2™ over Z;. Yang, Helleseth, Kumar and Shanbhag [11] gave a lower bound on d, for
Kerdock codes over Z; and exactly determined d, for r = 0.5,1.0,1.5,2, and 2.5. In case of
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Kerdock codes of length 22™, they also determined d, for any r, where 0 < r < m and 2r is an
integer. Recently, Yang and Helleseth [12] also considered the generalized Hamming weights
for Preparata codes of length 2™ over Z, and exactly determined d, for r = 0.5,1.0,1.5,2,2.5
and 3.0.

In order to determine the generalized Hamming weights of a linear code over Z,, a tighter
lower bound is essential. The following lemma is very useful to get a lower bound on the rth
generalized Hamming weight d,(C).

Lemma 4 ([11}) Let C be an [n,k] linear code over Z,, and let B C C be a submodule which
has 4" codewords and support size s.. Then we have

1
Sy = T Z wi(€)
ceB

where wr(-) is the Lee weight of c.

The concept of the chain condition was introduced by Wei and Yang [10] in their study of the
weight hierarchy of product codes. An [r, k] code C over Z, is said to satisfy the chain condition
if there is an increasing sequence {D, }*_,  such that D, is an r-dimensional submodule of C

achieving d.(C) and D, C D, for all r. Or equivalently, C satisfies the chain condition if

(a) there exists a permutation of the coordinates, and

(b) there is an increasing sequencev {D,}f_y 5 of submodules of C such that dim(D,) = r,
D, C Dryos and x(D,) = {1,2,...,d,.} for all r.

IV. THE PREPARATA CODE P, OF LENGTH 16 DOES NOT SATISFY THE
CHAIN CONDITION

Note that the projection u(Py,) of the Preparata code Py, is exactly the extended binary
Hamming code H,, of length 2™, whose parity check matrix is given by

i1

= m_
01 a o --- o2

p(H)

Thus for any codeword ¢ in Py, such that 2¢ # 0, the codeword 2¢ has even Hamming weight
of at least 4, so has Lee weight of at least 8.

Theorem 5 Let m, m > 3, be an integer and let P,, be the Preparata code of length 2™ over
Z4. Then we have
dr 2 dfr] (Hm)

where Ho, is the extended binary Hamming code of length 2™ and {r] is the least integer greater

than or equal to r.
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Proof: We note that every module of dimension r has [r] linearly independent vectors of
the form 2c over Z;. The theorem follows from the fact that 2¢ is just a codeword of H,,,
multiplied by 2 (mod 4). o

Remark 6 The extended Hamming code H., is the [2™,2™ —m —1,4] binary code. The weight
hierarchy of the extended Hamming code H,, is well-known in the following [9]:

{d,(Hn) |1 <r <2 —m -1} ={2,3,...,2"}\{2°+1|0<s<m—1}.

It may be needed to systematically check a number of submodules spanned by at least [r]
generators in order to determine d,(m) and the check the chain condition. The following simple

tests are very useful to check that a linear combination ¢ of generators is a codeword in Py,:
T.1 For any codeword ¢ = (cx)xe7, € Pm, we have Lxer. cx =0 (mod 4).

T.2 For any two distinct codewords ¢1, ¢2 € P, we have wy(c1—c2) > 4 and wy(2¢;~2¢;) >
4.

T.3 No vector of the form (1133) with support size 4 is a codeword in P,.

T.4 A vector of the form (1111) with support size 4 can be a codeword of Py, for even m,
but not a codeword of P,, for odd m.

T.5 If m is even, wr(c) > 4 for any nonzero codeword ¢ € Pp. If m is odd, wi(c) > 6 for
any nonzero codeword ¢ € Py,.

Let 3 be a generator for R} satisfying 3% + 28% + 8+ 3 = 0. Then the Preparata code P
has the parity-check matrix H given by

11111111
01001231
H= (3)
0010333 2
0 0012311

Note that HH* = 0 (mod 4), where H* is the transpose of H. This implies that the Preparata
code P; of length 8 is self-dual, so it is the Kerdock code K3 of length 4 whose generator matrix
is given by H in (3). In particular, Ps is called the octacode in [2]. It is well-known (3] that its
image under the Gray map is the Nordstrom-Robinson code.

Proposition 7 ([1]) The weight hierarchy of the Preparata code Ps of length 8 over Z, is given
by
{4,5,6,6,7,7,8, 8).
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Proposition 8 The Preparata code Ps of length 8 over Z, satisfies the chain condition.

Proof: Consider the generator matrix (or parity-check matrix) H of Ps, given in (3). Let ¢;
be the (4 — 7)th row of H. Define an r-dimensional submodule D, of P; as follows:

D — < €CpyeenyCr >, if 2r is even
r < C1lye++3Cr05, 2C,-+0_5 >, if 2r is odd.

Then D, achieves d,(3) given by Proposition 7 and D; C D; for i < j (0.5 < i < j < 4). Hence,
‘P5 satisfies the chain condition. a

Proposition 9 ([12], Theorem 31) The weight hierarchy of the Preparata code Py of length 16
over Z4 is given by

{4, 4, 6,6, 7,8, 8,9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16}.

Lemma 10 ([12]) Let D be a 2-dimensional submodule and let x = {X1,Xa,...,Xe} be its
support. Let G be the generator matriz for D with restriction to x, given by

111100
13201 1|
Then D is a submodule of Py, if and only if 4|m.

Lemma 11 ([12]) Let D be a 2-dimensional submodule and let x = {X1,Xa,...,Xe} be its
support. Let G be the generator matriz for D with restriction to x, given by

1113290
132011}
Then D is a submodule of Py, if and only if 3|m.

To show the non-existence of chain for the Preparata code Py, we need the following lemma.

Lemma 12 Let C be a [8,4,4] binary code whose codewords have even weight. Let A; be the
number of codewords of Hamming weight :. Then C has the weight distribution given by

A0=1, A4=14, A8=1

and 1s equivalent to the binary code with generator matriz

11110000
110061100
(4)
10101010
01101001
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Proof: Clearly, we have

Ag+ A+ Ag = 15,
4A4 + 6A6 + 8A3 = 64

It is easy to check that Ay = 14, A¢ = 0, and As = 1. Since Ay > 7, so there are three
linearly independent codewords of weight 4. Hence, these codewords can be used as the first
second, and third rows of the generator matrix, respectively. The fourth row can be chosen the

codeword of weight 8, which can be also replaced by a proper codeword of weight 4, as shown
in (4). . a

Theorem 13 The Preparata code Py of length 16 over Z; does not satisfy the chain condition.

Proof: Note that dos(4) = 4, d1.0(4) = 4, d15(4) = 6, d2.0(0) = 6, d25(4) = 7, d30(4) = 8,
ds5(4) = 8, and dso(4) = 9 by Proposition 9. Suppose the chain condition holds for the
Preparata code P4. Let ¢y, €3, ¢3, and 2¢4 be codewords of Pm such that the module D,
defined by

D _{<c1,...,c,>, if 2r is even
T < C1y---,Cr—05y2Cr405 >, if 2r is odd
is an r-dimensional submodule of Pj, achieving d,(4) for 0.5 < r < 3.5.

Consider the submodule D35, whose support is given by {X;, Xs,...,Xs}. Note that the
submodule < 2¢;,2¢,,2¢3,2¢4 > restricted to {X1, X3,...,Xs} is a [8,4,4] binary code, mul-
tiplied by 2 (mod 4). Thus, by Lemma 10 and Lemma 12, we can assume without loss of
generality that

c 11110000
2| |13201100
es | | * A x0 %012
24 0220200 2

where * € {1,3} and A € {0,2}. If A = 0, then wy(es +2¢4) = 5. If A = 2, then
wg(cs + 2¢4) = 4, so we have c3 + 2¢4 = (10101010). Note that < cz,¢3 +2¢c4 > is a
2-dimensional submodule of P4 with support size 6, so it achieves d3(4). But, this is impossible
by Lemma 10 and Lemma 11, so we get a contradiction. ]

V. CONCLUDING REMARKS

The Preparata code of length 8 over Z; (the octacode) is self-dual and satisfies the chain
condition. In this paper, we show that the Preparata code of length 16 does not satisfy the
chain condition. Therefore, an interesting and natural problem arises: Does the Preparata code
of length 32 satisfy the chain condition ? '
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