Proceeding of the Korean Nuclear Society Spring Meeting
Cheju, Korea, May 1996

Geometrically Non-Linear Analysis for Shallow Arch
using the 3-Dimensional Curved Beam

Dae Hee Lee and Se Yoon Eum

Korea Atomic Energy Research Institute
Abstract

This paper presents a geometrically non-linear formulation for the general curved
beam element based on assumed strain fields and Timoshenko’s beam theory. This general
curved beam element is formulated from constant strain fields. And this element, designed in
a local curvilinear coordinate system, is transformed into a global cartesian system in order to
analyze effectively the general curved beam structures located arbitrarly in space. Numerical
examples are presented to show the accuracy .and efficiency of the present formulation. The
results obtained from the present formulation are compared with those available in the
literature and analysis by ANSYS.

1. Introduction

The curved beam elements are used for analyzing various curved beam structures
effectively by the finite element method in general. Since deformation behaviors are coupled in
the curved beam, these curved beam elements show the locking phenomena that have a
direct effect on the accuracy of solutions. In order to reduce the locking phenomena in a
curved beam element, many studies have been performed by means of various techniques.
These are typically the strain element t;achnique[H]
method® and the modified isoparametric elements[s'sl, etc.. However, these previous works
have been confined to beams curved and bent only in the plane of curvature, so that no
torsion is involved. The original work including out-of-plane deformation, based on

, the selective or reduced integration

independent strain functions, was done by sabir'. However, it has been formulated on the
basis of Euler beam theory. A few works® *? has been done on a general curved beam
element, including the effect of shear, which is arbitrarily located in space, showing the
in-plane and out-of-plane deformations as well as torsional deformations. These elements
have been formulated on the basis of modified isopametric shape function in order to reduce
the locking phenomena. Recently, the general curved beam elements based on the assumption
of the strain fields which is well known as a means of removing the locking phenomena
and Timoshenko’s beam theory was developed by Choi and Lim™ These elements included
the axial, in-plane, out-of-plane, bending and torsion deformations.

In the present work, geometrically nonlinear formulation for the general curved beam
developed by Choi and Lim was derived. Numerical examples are presented to show the
accuracy and efficiency of the present formulation. The results obtained from the present
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formulation are compared with those available in the literature and analysis by ANSYS.
2. General curved beam element

In a typical' curved beam element, the local curvilinear coordinates x,y and z are
defined as shown in Figure 1, and u, v, w, and O, 8, 8. are' displacement and rotational
components in the positive directions of each coordinate axis established at an arbitrary point
on the beam axis. The strain-displacement relation on the basis of Timoshenko’'s beam
theory are obtained as follows: '
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where R is the radius of curvature of the curved beam axis in the xz plane. In equation (1),
(&) =[em Xry s Xz %z Tos)” (2) '
Suppose the strain vector { E‘} has constant values in a discrete curved beam element
such as
{2) =10 G G € G5 Gl 3

where C;, C; Cs, Cs4 Cs and Cg are arbitrary constanfs. Equations (1) and (3) can be
integrated to obtain general solutions of element displacement functions as follows:

{q) =[[o)@N{ C} =[0}{C} (4)
In equation (4),
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{q} is the element displacement vector in the local curvilinear coordinate system. [$:] and [®:]
represent the strain mode and the rigid body mode in a general curved beam element. '
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3. Derivation of linear and non-linear local stiffness matrix

The stiffness matrix can be derived from the total potential energy theorem. The
total potential energy of a curved beam element is expressed as

r=1 1)1l ()= [ (a) (P (8)
Generally, the strain vector is divided into linear and non-linear terms as follows
{e} = {er} + {en} 9

The subscript L and N denote the linear and non-linear part, respectively.
{eL} is a linear strain vector rearranged as

{er) =len 7oy Vi X 2y %2)" (10)
which is related to the stress resltant vector {0.}. So, the linear stress-strain relations in
general curved beam element may be expressed as

{or) =[D]{ e} (11)

where

£ea 0
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In equation (12), E is the Young’'s modulus, G is the shear modulus, B? is the shear
correction factor, and A is the cross—sectional area. Thus, B’GA is the shear rigidity, Ely and
El; are the flexural rigidities in each direction, and GIx is the torsional rigidity. {en} is
nonlinear strain vector as

{en) =[e, 0000017
—rleduy2, 1 dvy 1 dwy:
[5(Z+ 5 (L2 +5 (442000001 (13)

The linear and non-linear strain vector may be expressed in a matrix form with the
generalized displacement vector {C} by rearranging the strain vector of equation (9) as

{er)} =[BL]{ C} (14)

{ Exx Enll Enz’ 6,.3'} =[BN] {C} (15)
where &,1'=du/dx, £,2'=dv/dx and &,3'=dw/dx.
The assumed strain function matrix [BL] and [Bx] in equations (14) and (15) are given by

100000000000
000001000000
1001000000000
[B.] 000010000000 (16)
010000000000
000100000000
10 00000 0 6 0 0 0
[By=[0 0 00000 Sé sé 4 0 an
0 0 00OR10 0 0 o -Shé cosd
0-R0O0100-<54 _siéd, 0

The generalized displacements in equation (4) can be related to the nodal displacements by
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using the element boundary condition. Thus, its inverse relationship gives the generalized
displacement vector {C} as follows
(C)=[A)1"! {4.) (18)

where (4.} =[a ¢

(Al=(0],;
The subscripts mean the positional substitution of each element nodal points. By substituting
equations (9), (10) and (13) into equation (8), and rearranging the equation (8) with equation
(14) and (15), and taking the first variation of equation (8) with respect to {AL), an element
equilibrium equation in the local curvilinear coordinate system is obtained as follows:

(A% [ (BB det [ 1BITDIBA de XATT(41)

=A™ 1017 P) (19)

In equation (19), [Dn’'] is a symmetrical constitution matrix resulting from the non-symmetric
constitution matrix [Dn] as follows:

l ’
2
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Thus, we can get the element stiffness matrix in the curvilinear coordinate system as

[K]1=[K;]+[Ky] (22)

where  [K;1=[A"17 [ (B 1D.I(B,] ds [47']

[kl =[A™)7 [ 1B LD B de (A7)

4. Coordinate Transformation of an Element Matrix Equation

The nodal displacements in the local curvilinear coordinate system can be expressed
in the form of the global displacement vector {Ag} of an element.
(4.} =[TUT\1{ 45} (23)
where [T,] : Transformation matrix between global cartesian set(X, Y, Z) and 1
local cartesian set(x’, y’, z')
[T:] :Transformation matrix between local cartesian set(x’, y’, z’) and
local curvilinear set(x, y, z)
By substituting this equation (23) into equation (19) and multiplying the transpose of [T2][T:]
on resulting equation, an element equilibrium  equation is obtained in the global cartesian
coordinate system as follows
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[Kgl{de) = ( Fg) (24)
where [Kl=[T\ 1T TKI T, T\]

(Fo) =[TITT1TA™7 [ 1017 (P) ds
In this equation, {Kg} is the global stiffness matrix and {Fg} is the equivalent nodal force
vector of an element.

5. Tangential stiffness matrix

The geometrically non-linear equation is solved by means of the modified Riks
method"®. The tangential stiffness matrix used in this work can be obtained by taking the
second variation of equation (8). The constitution matrix becomes of symmetric form as
follows

0 En’ -y &
o €y e tEn 0 0
[Dy"]1=EA €o 0  3e,ten O (25)
&3 0 0 et ey

The tangential matrix [Kt]° can be obtained by substituting equations (12) and (25) into
equations (22)-(24). The equilibrium equation in the incremental form is expressed as follows

[(Krcl{ dd¢} = { 8F¢) (26)

Equation (26) has to be used only for the iterative procedure, and this equation can give the
incremental displacement components according to the incremental loads.

6. Numerical expriment for the non-linear analysis

Typical shallow curved beam shown in Figure 2 is taken as the computational model. The
values of the material properties are chosen as Young’s modulus E=1.0x10"7 N/cm? poisson’s
ratio v=0.3 and shear correction factor B?=0.85

6-1 In-plane large deflection analysis of a shallow arch

The hinged circular arch with a single static in-plane load at apex in vertical
direction was analyzed for buckling using the general curved beam element. One half of the
arch was idealized using 2, 4, 6 and 8 equal curved beam elements. Figure 3 and 4 show the
predicted load-deflection curves of the arch for R/L=25 and variation of La/H in case of
R/L=25. La means the arch-length in Figure 4. This arch was also analyzed by Choi and
Limm, who used CSCC(Constant Strain Constant Curvature) element which is the
2-dimensional curved element. These results are exactly the same as those analyzed with
CSCC element.

6-2 Out-of plane large deflection analysis of a shallow arch

In order to demonstrate the accuracy for the geometrical non-linear formulation of
the general curved beam in case of out-of-plane large deflection analysis, the results were
compared with those analyzed by ANSYS. For this analysis, The model which has R=1000
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cm and 6=2.866" was selected to describe the analysis model which is close to straight beam
in order to compare the analysis results using the general curved element with those anaylzed
by ANSYS because ANSYS has the 3 dimensional straight beam element(BEAM4). Figure 5
shows the predicted load-deflection curves of the analysis model which is close to straight
beam. The model analyzed by ANSYS is discretized into 12 elements and the model with the
general curved beam element is discretized into 2, 4, 6 and 8 element. The results analyzed
with the general curved element are agree with those analyzed by ANSYS very well. The
same model used for in-plane large deflection analysis was selected for out-of-plane large
deflection analysis to demonstrate the efficiency for the geometrically non-linear formulation
of the general curved beam in case of out-of-plane large deflection analysis, but a single
static load at apex was applied in out-of-plane lateral direction. Figure 6, 7, 8, and 9 show
the predicted load-deflection curves for the comparision between the results with the general
curved element and those analyzed by ANSYS. The model with the general curved beam
element is discretized into 8 element and the model with ANSYS is discretized into 12
elements. These results show that a difference between the results with the general curved
beam element and those analyzed by ANSYS exists remarkably according to increase of the
ratio La/H.

7. Conclusion

A geometrically non-linear formulation is presented for the general curved beam
element based on the assumptions of strain fields on the Timoshenko’s beam theory. This
general curved beam element is formulated from constant strain fields. And this element,
designed in a local curvilinear coordinate system, is transformed into a global cartesian
system in order to analyze effectively in space.

Numerical examples are presented to show the accuracy and efficiency of the present
formulation. The results obtained from the present formulation were compared with those
available in the literature and analysis by ANSYS. Numerical results show that the present
formulation give a same results reported in reference™ for in-plane large deflection of the
shallow arch and a excellent agreement with those analyzed by ANSYS for the out-of-plane
large deflection of the analysis model which is close to straight beam. Also, numerical results
for out-of-plane large deflection of the shallow arch show a remarkable difference from those
analyzed by ANSYS according to the variation of the aspect ratio. So, this formulation can

be used efficiently for the geometrically non-linear analysis of the curved beam structures.
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Figure 1 Geometry of a general curved beam element

Figure 2 Shallow arch
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Figwe 4 Load/Deflection Curves of the shallow arch

Figure 3 Load/Deflection Curves of the shaliow arch for R1L=2 5(in-plane load)
for variations of La/H of RAL=2.5(in-plane Load)
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Figure 6 Load/Deflaction Curves of the shaliow arch for LaH=5(out-of-plane load)
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Figure 7 Load/Deflection Curves of the shallow arch for La/H=20(out-of-plane load)
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Figure 9 Load/Deflection Curves of shallow arch for La/H=100{out-of-plane)
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Figure 8 Load/Deflection Curves of the shaliow arch for Lat=60(out-of-plane load)



