Hedging Point in the Production Control of Failure Prone Manufacturing Systems

염 완 섭
WAN-SUP UM
Department of Industrial Engineering, Kangnung National University

ABSTRACT

Most manufacturing systems are large and complex. It is natural to divide the control into a hierarchy consisting of a number of different levels. Each level is characterized by the length of the planning horizon and the kind of data required for the decision making process.

This paper describes an approach for the incorporation of Maintenance times into a hierarchical scheduling for a failure prone flexible manufacturing system. The Maintenance should not be performed too often because of the resulting reduction of capacity. The machine failure and preventive maintenance are considered simultaneously.

1. Introduction

While the technology of manufacturing is improving rapidly, a basic understanding of the systems issues remains incomplete. They are production planning, scheduling, and control of work in process. They are complicated by randomness in the manufacturing environment particularly due to machine failures and other events, including setups, preventive maintenance, absences of raw materials, engineering changes, training sessions for new personnel, expedited batches, and many others.

We study systems involving many part types that are disturbed by machine failures and others. The basic idea is to keep track of the capacity of the system, as it varies over time as machines fail and are repaired. It is important to develop models and algorithms which allow the FMS controller to generate production schedules which satisfy demand requirements and exercise control over the system so that the output conforms to the schedule.

Kimemia and Gershwin [5] derived a closed loop solution to the problem of dispatching parts to machines in a failure prone FMS. They found suboptimal strategies that are easy to calculate and that provide satisfactory performance.

The solution of dynamic program has two components. One is the calculation of the cost to go function $J(x, a)$. Since the calculation of J is performed once, it is the longest term component of the scheduling rule. The other is the calculation of the control law, which requires J. The short term portion of the scheduling rule is the loading of parts in a way that agrees with the current production rates.

2. Problems of FMS

Design, planning, scheduling, and control problems of FMS involve some
intricate operations research problems. FMS design problems include determining the appropriate number of machine tools of each type, the capacity of the material handling system, and the size of buffers. FMS planning problems contain part type selection, machine grouping, product mix, resource allocation, and loading problem. FMS scheduling problems are concerned with running the FMS during real time once it has been set up during the planning stage. FMS control problems are those associated with monitoring the system, keeping track of production to be sure that requirements and due dates are being met as scheduled.

Operational control of an FMS is very complicated. It involves accessing large static and dynamic data sets and complex control algorithms. The control algorithms are structured hierarchically, where an upper level issues commands to a lower level and gets feedback on the achievement of these command. In order to make good decisions under uncertainty, it is necessary to know something about the current state of the system and to use this information effectively.

3. Overview of hierarchical policy

Operating policies for manufacturing systems must respond to machine failures and other important events that occur during production such as setups, demand changes, expedited batches, preventive maintenance, etc. Each of these events takes up time at resource. Some events are controllable, others are not controllable but predictable. In this paper, we develop hierarchical scheduling and planning algorithms. The levels of the hierarchy correspond to classes of events that have distinct frequencies of occurrence.

Here, Three kinds of events are considered. They are production operations on parts, failures and repairs of machines, and preventive maintenance. Operations occur much more often than failures, maintenance, and we can use the continuous representation of material flow. The state of the system has two parts. One is a vector of real numbers (x(t)) that represents the surplus, the cumulative difference between production and requirements, the other is a vector of integers (a(t)) that represents the set of machines that are operational. The object is to choose the production rate vector (u(t)) as a function of the state (x(t)) and (a(t)) to keep the surplus (x(t)) near 0.

A three level control hierarchy designed to compensate for work station failures and maintenance is proposed. The hierarchy is illustrated in Fig. 1.

![Three level control hierarchy](image)

Assume that the production requirements are stated in the form of a demand rate vector d(t). Let the instantaneous production rate vector be denoted u(t). Define x(t) to be production surplus. It is the cumulative difference between production and demand and satisfies

-378-
\[
\frac{dx}{dt} = u(t) - d(t)
\]
(1)

The production rate vector \(u \) is limited by the capabilities of the machines. Let part type \(j \) require time \(\tau_{ji} \) for all of its operations on machine \(i \). Then

\[
\sum_{j=1}^{n} \tau_{ji} u_j(t) \leq a_j(t)
\]
(2)

where \(a_j(t) \) is 1 if machine \(i \) is operational and 0 if it is down. If there is a set of identical type \(i \) machines, \(a_i(t) \) is the number of these that are operational at time \(t \).

\[u_j \geq 0. \]
(3)

Inequalities (2) and (3) can be written as

\[u(t) \in \Omega [a (t)] \]
(4)

These requirements and constraints on the production rates can be expressed as a dynamic optimization problem as follows.

\[
\min E \left\{ \int g[x(t)] dt \mid x(0) = x_0, a(0) \right\}
\]

subject to

\[
\frac{dx}{dt} = u(t) - d(t)
\]

\[
\sum_{j=1}^{n} \tau_{ji} u_j(t) \leq a_j(t)
\]

\[u_j \geq 0. \]

given initial conditions \(x(0) \) and \(a(0) \)

4. real time control with failure and maintenance

At the highest level of the control scheme is the off-line calculation of the parameters of the control policy to be used in the flow level. In order to calculate the hedging point we consider Fig. 2 as follows.

A : the starting point of maintenance

B : the next starting point of maintenance

C : the ending point of machine repair

D : the starting point of machine failure

t_0 : the starting point of maintenance

t_0 : the ending point of maintenance

Figure 2: Production surplus

A maintenance begins at time \(t_0 \) that forces \(u_j \) to be zero. This causes \(x_i \) to decrease at rate \(-d_i\). If maintenance continues for a length of time \(A-t_0 \) then the minimum value of \(x_i \) is \(H_1-d_i(A-t_0) \).

A failure occurs at time \(t_4 \) that forces again \(u_j \) to be zero. This causes \(x_i \) to decrease at rate \(-d_i\) if failure lasts for a length of time \(C-t_4 \) then the minimum value of \(x_i \) is \(H_1-d_i(C-t_4) \). We can find hedging point \(H \) to minimize the total inventory cost in Fig 2. We obtain

\[
H = \frac{d(s+mT_c)(bU+ad)-(w+mT_c)ad(U-d)}{(m+1)U(a+b)}
\]
(6)
Where s is the mean maintenance
time and w is the mean time interval
between consecutive maintenances and T_i
T_i are MTTR and MTBF. Average
inventory cost and shortage cost are a
and b. Mean number of machine failure
during w is m.

5. Conclusion

This paper suggests an approach to
incorporating maintenance times into the
hierarchical control for unreliable FMS's.
The goal of the control system is to
meet production requirements while the
machine fail and are repaired at random
times.

The control is organized in a
hierarchical structure according to the
various decisions at the different time
scales. Here the formulation of
hierarchical scheduling and maintenance
problem of FMS and the simple solution
methodology are suggested, and the
hedging point of this model is calculated.

Reference

[1] Akella, R., Choong, Y.F. and
Gershwin, S.B.,
"Performance of Hierarchical
Production Scheduling Policy",
IEEE Trans. Components Hybrids
Mfg. Technol. CHMT-7(1984),
pp.225-240.

[2] Akella, R. and Kumar, P.R.,
"Optimal Control of Production
Rate in a Failure Prone
Manufacturing System,"

[3] Bielecki, T., and Kumar, P. R.,
"Optimality of Zero-Inventory Policies
for Unreliable Manufacturing
Systems,"
4(1988), pp.532-541

[4] Gershwin, S. B.,
"Manufacturing Systems
Engineering,"
Prentice Hall (1994)

S.B.,
"An algorithm for computer control
of production in Flexible
Manufacturing Systems"
IIE Trans. Vol. 15, No. 4(1983),
pp.353-362.

[6] Um, Wan-Sup and Kang, S. H.
"Dynamic Control for FMS
that has unreliable machines
with set-up,‟ J. of the Korean
Operations Research and
Mangement Science, 17(1),