제어로봇시스템학회:학술대회논문집
- 1996.10b
- /
- Pages.988-991
- /
- 1996
Design of robust LQR/LQG controllers by LMIs
Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계
Abstract
The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.