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Abstract In this paper, a sliding mode control scheme that guarantees the smoothness of the control
signal and the exponential error convergence is proposed for robot manipulators. The proposed method
inserts a low pass filter (LPF) in front of the plant, and the virtual controller is designed for the virtual
plant — the combination of the LPF and the robot manipulator. The virtual control signal contains high
frequency components because of a switching function. The real control signal, however, always shows a
smooth curve since it is an output of the LPF. In addition to the smoothness of the control signal is always
assured, the overall system is in the sliding mode at all times, that is, its performance is always invariant
under the existence of parameter uncertainties and external disturbances. The closed-loop system is shown

to be globally exponentially stable.
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1. INTRODUCTION

The sliding mode control has been widely studied in
recent years and started to play an important role in
the application of the control theory to practical prob-
lems, e.g., robot controls [1]-[3]. Although this kind of
control methods shows the invariant property against
parameter uncertainties and external disturbances, it
is assumed that the control signal can be switched from
one value to another infinitely fast. In practical sys-
tems, however, it is impossible to achieve the infinitely
fast switching control because of finite time delays for
the control computation and limitations of physical ac-
tuators. In addition, in the steady state, the chatter-
ing phenomena appear as a high frequency oscillation
near the desired equilibrium point and it may excite
the unmodeled high-frequency dynamics of the system
[4]. Since it is almost always desirable to avoid the
chattering phenomena, lots of studies have been per-
formed to overcome this phenomena {5]-[8].

Zinober et al. inserted the first order low pass filter
(LPF) between the controller and the plant in order to
yield a smoother control signal [5]. However, it was just
a trial and no analysis was presented in [5]. Moreover,
since the control system was designed for the closed-
loop system without LPF, it is obvious that the overall
system, including LPF, may be unstable.

Espana et al. proposed switching zone instead of
a switching surface [6]. Since the proposed method
used a corn shape sliding manifold, the resultant con-
trol signal showed a smooth curve. In the steady state,
however, it also shows the chattering phenomena be-
cause the corn shape sliding surface is the same as that
of the conventional one in the vicinity of origin.
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Almost all of researchers has used continuation tech-
niques. These techniques are focused on the smooth-
ing of a switching function. Instead of a switching
function, lots of continuous functions has been used
such as: saturation functions, sigmoid functions, relay
functions, and hysteresis-saturation functions [1]. All
of these methods, however, suffer from the same diffi-
culty — there is no quantitative rule for assigning the
boundary layer thickness of their algorithms. Thus,
the corresponding effects of the chattering alleviation
may not be guaranteed. In addition, these approaches
can not ensure the error convergence to zero, i.e., only
the ultimate boundedness of the error within some pre-
determined boundary layer can be guaranteed.

Chang et al. proposed a chattering alleviation con-
trol (CAC) scheme [7]. But, as is noted by Shyu (8],
this method may lost the invariance property against
parameter variations and external disturbances. Fur-
thermore, the method needs a predictive calculation to
switch the control law in the hitting or sliding phase,
and this increases the difficulty in the implementation
8]

Shyu et al. proposed the modified smoothing func-
tion [8]. As the Espana’s work [6], they proposed two
sliding surfaces to define a sliding zone (corn shape)
and then make a controller to switch from one slid-
ing surface to the other one. However, the proposed
method also shows the chattering phenomena in the
steady state. Furthermore, as can be shown in the sim-
ulation results in [8], the output performance is not so
good/smooth compared to the results when the satu-
ration function is used.

Thus, in this paper, a sliding mode control scheme
that guarantees the smoothness of the control signal



and the exponential error convergence to zero is pro-
posed for robot manipulators. The main concept is
to consider the combination of the inserted LPF and
the robot system as a vtrtual plant, and then design a
virtual sliding mode controller u for this virtual plant.
Although the virtual control signal u shows the chat-
tering phenomena because of the switching function,
the real control signal r shows a smooth curve since it
is an output of the LPF whose input is u as shown in
Fig. 1. A function augmented sliding surface is also
proposed such that the system state is on the surface
at the initial time. Due to the proposed function aug-
mented sliding surface, the closed-loop system always
shows the invariant property against parameter uncer-
tainties maintaining the smoothness of the real control
signal without sacrificing the tracking accuracy. The
closed-loop system is shown to be globally exponen-
tially stable.

2. CONTROL SYSTEM DESIGN

The dynamic equation of an n degree-of-freedom
robot manipulator can be derived as

M(g)§+Cl9,9)¢+G(a) =Y (9,4, )0 =7 (1)

where M(gq) is an n X n inertia matrix, C(g,4¢) is an
n X n matrix corresponding to Coriolis and centrifugal
factors, G(q) is an n x 1 vector of gravitational torques,
g 1s an n X 1 vector of joint angular positions, 7 is an
n X 1 input torque vector, # is a constant p-dimensional
vector of inertia parameters and Y is an n X p matrix
of known functions of the generalized coordinates and
their higher derivatives. It can be assumed that the
parameter vector 4 is uncertain but there exists known
values 8y € RP and p € R such that [2]

161 = 116 — b0l < p.

From the input-output relation of the LPF, the fol-
lowing equation can be obtained (see Fig. 2).

T+ AT = Au

(2)

where A = diag(Ay, Az,...,An), Ay > 0, and 7 = 1,
2, ..., n. Substituting (1) into (2}, we can obtain the
dynamic equation of the virtual plant as

Mi+ MG+ AMi+Ci+Ci+AC4+ G+ AG = Au.

Then, the virtual sliding mode control law u can be
derived based on the above dynamic equation (3). Let
us define the tracking error as

e(t) = q(t) — qa(?)

where g4(t) € R™ represents the desired trajectory, and
propose a function augmented sliding surface.

s=E+ A1é+ Age — F(t) (4)

where A; = diag(Agl,/\Q,...,)\,‘n), /\ij > 0, 1 = 1,
2, 7=1,2, ..., n, F(t) € R*, and the following
assumption holds for each Fj;(t).

(3)
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Assumption 1 The augmented function F;(t) is a dif-
ferentiable continuous function defined on ¢ € [0, o0),
F;(0) = €(0)+A1€(0)+A2¢(0), and there exists positive
constants A and B, such that

|Fi(t)] < Ae™ 5%

Remark 1 Since the augmented function F;(t) can be
designed arbitrarily, the above Assumption 1 always
holds. Therefore, it is obvious that the proposed func-
tion augmented sliding surface (4) ensures s{0) = 0.

Let us define the following positive-definite function
as a Lyapunov function candidate:

1

V = EsTMs. (5)

Differentiating (5) with respect to time and adopting
the skew-symmetricity of M(q) — 2C(q, ¢), we have

sTMs+s7Cs

sT (Ms + Cs)

sT(Au+ M(A1E+ Agé — F —44)
+C(A1é + Age — F — §4) — (M + AM)§
~(C 4+ AC)§ - (G + AG)). (6)

Vv =

Here, let us define a vector H as following:

H = M(Aé+Azée— F —39) + C(A1é + Aze — F — §y)

—(M +AM)§~ (C + AC)g — (G + AG).

Since the Lagrangian dynamic equation of a robot is
linearly parameterizable as (1), it is obvious that H is
also linearly parameterizable as

(8)

where ¢ is a constant r-dimensional vector of inertia
parameters and I' is an n X r matrix of known functions
of the generalized coordinates, desired trajectories, and
their higher derivatives. It can be also assumed that
the parameter vector ¢ is uncertain but there exists
known values ¢o € R™ and £ € R" such that

|¢i] = 16s — bo;| < &

where §; >0and:=1,2,..., n.
From (6) and (8), V can be rewritten as following:

(9)

Thus, in order to stabilize the overall system, u has to
be designed such that the above V is negative definite.

H= F(t> 9, d) ‘f, qd, éd; ‘Id,‘Id)d’

V =sT (Au+T9).

Theorem 1 Applying the following virtual control in-
put {10) to the virtual plant (3), the closed-loop system
is globally exponentially stable.

u=—A"" (Tgo + (T€) o sgn(s) + ¥sgn(s))  (10)
where Fij = IFiJ'Ia v = diag('»bl:’/)% "-;¢n)w ¢i >
0, i=1 2 . sgn(s)T = [sgn(ss), san(sa),



..., sgn(s,)], and “s” means the element-by-element
multiplication of two vectors.

Proof: For the Lyapunov function candidate (5}, its
time derivative V is given as (9). By substituting the
proposed control law (10) into (9), a simple calculation
shows that V is bounded as follows:
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sT (Au+T'g)
sT(T (¢ — do) — (T¢) e sgn(s) — Usgn(s))
sT (F(; — (fﬁ) o sgn(s) — ‘Ilsgn(s))

n

Z {s;(I‘<5)i - |si] (-fﬁ)‘.} — sTWsgn(s)

i=1
n

=2 (Wils)).

=1

<

—sT\Ilsgn(s)

(11)

From (5) and (11), V is a positive definite function and
Visa negative definite function, that is, V is a Lya-
punov function. From Remark 1, the proposed sliding
surface (4) ensures s(0) = 0, and it is equivalent to
V(0) = 0. Hence, from these results, it can be said
that V' always stays at zero, i.e., V(t) = 0 V¢t > 0.
This is also equivalent to s(t} =0 V¢ > 0 because V is
a positive definite function of s. Therefore, it can be
guaranteed that the overall system always shows the
invariant property to parameter uncertainties because
the proposed control system has no reaching phase.
Thus, it is obvious that the tracking error exponen-
tially converges to zero from the definition of the slid-
ing surface (4). ]

Remark 2 Since the virtual control input u given in
(10) contains the switching function sgn(-), u produces
a high frequency switching signal. The real control sig-
nal 7, however, does not contain high frequency com-
ponents because it is made by low pass filtering u (see
Fig. 1). Therefore, from the result of the above theo-
rem, even though the real control signal does not chat-
ter, the tracking error exponentially converges to zero
maintaining the invariant property against system un-
certainties at all times.

Although the saturation function has been generally
used to get a smooth control signal in the previous
works, the proposed scheme guarantees the smoothness
of the control signal without sacrificing the tracking
accuracy.

3. SIMULATION RESULTS

The simulation has been carried out for a two-link
robot manipulator model used by Yeung and Chen [3].
The dynamic equation is given by

M(q)§+Clg,9)¢ +G(q) = u,
where g = {q; 2|7,

M,

(m1 + mo)rs + mar2 4+ 2myrira cos ga + Jy
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M, = My = mzrg + mariry Cos gz

My, = moriq4 J,

Cin = —2mgariragosing,

Cia —mgrir2q2 Sin go

C21 = moriragrsing,

Cypy = 0
Gy = {(my +my)ricosq + maracos(q; +¢2)} g
G2 marag cos(qy + ga).

The parameter values are also the same as those of
Yeung and Chen as follows:

r1 = 1m, ra=0.8m,
Jy =5kg-m, J;=5kg m,
m; = 0.5kg,

0.5kg < my < 6.25kg.

The simulation results are shown in Figs. 2~4.

The tracking error of the proposed controller is pre-
sented in Fig. 2. One can easily know that the tracking
error converges to zero.

In Fig. 3, the virtual control signal u is given. Be-
cause of the switching function sgn(-), it chatters with
the high frequency. However, as can be seen in Fig.
4, the real control signal 7 applied to the robot(real
plant) shows the smooth curve.

4. CONCLUSIONS

In this paper, a sliding mode control method guaran-
teeing the smoothness of the control signal is proposed.
In order to avoid the chattering phenomena, the first
order LPF and the concept of a virtual plant/controller
has been used. The proposed control scheme always
ensures the invariance property against parameter un-
certainties maintaining the smoothness of the real con-
trol signal without sacrificing the tracking accuracy.
That is, although the proposed controller generates a
smooth control signal 7, the closed-loop system is in
the sliding mode at all times and the tracking error
converges to zero exponentially under the existence of
parameter uncertainties and disturbances. The over-
all system has been shown to be globally exponentially
stable.
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Fig. 1. Block Diagram of the System

Time (sec)

Fig. 2. Tracking Error

Virtual Control Signal (N'm)

Actual Control Signal (N'm)

19

500 —

250

-250

-500

-
7

3

Time (sec)

Fig. 3. Virtual Control Signal ()

200

150 -
100

i T I
2 3 4 5

Time (sec)

Fig. 4. Actual Control Signal (7)




