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Abstract

We consider the interval of a gain within which it is
guaranteed that a feedback control system is stable.
This paper presents the condition under which either a
unity feedback control system is stable for a connected
gain interval with a proportional compensator cascaded
with an open loop forward transfer function. By the
connected interval we mean that all the numbers
between any two numbers in the connected interval
belongs to the connected interval. The condition may be
described by a frequency inequality in terms of the
denominator and/or numerator of the closed loop transfer
function. We also consider the conditions for the
discrete-time control systems and the time delay
continuous-time control systems. We show that this
condition cannot be extended for the transfer function
having complex coefficients via a counterexample.
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L. INTRODUCTION

The basic properties of the root loci of the unity
negative feedback control system are first due to Evans
(1948){11. An important study in the linear control
system is the investigation of the trajectories of the
roots of the characteristic equation, so--called the root
loci, when a certain system parameter varies. In this
paper, we consider the linear unity negative feedback
control system with a compensator having a varying
proportional gain. When we vary the gain from the
negative infinity to positive infinity, the unity negative
feedback control system may be stable for some

intervals. The main question is that under what
conditions is the control system stable for a connected
interval? We derive the sufficient condition under which
the system is stable for a connected interval. The
definitions ére in Section II. In Section III, we present
the main results. In Section IV we extend the condition
to the case of the discrete-time system and the time
delay continuous-time control system. In Section V, four
examples are included and the conclusion lies in Section
VI. All proofs of the given theorems are collected in
Appendix.

II. DEFINITIONS

Definition: By the connected interval we mean that
all the numbers between any two number in the
connected interval belong to the connected interval. The
connected interval may not be a null set.

Throughout the paper we assume that the unity
negative feedback control system has the strictly open
loop forward transfer function. If the open loop forward

transfer function is '%Lg-. then the denominator of the

closed loop transfer function of the control system is

£(s)

expressible as 1+4 /(;) . Similarly, the denominator of

the closed loop transfer function of the discrete-time
control system and the time delay continuous-time
control system may be described by

2(2) e "gﬂ s)
H'K/(z) and 1+ K s
respectively,

Definition (Angle Growth Condition):
If g(s) satisfies the condition

Im(g(jw) Si"(z"feﬁ(ﬂulgggg;n)
arctan ~p o i) <| %0 |

for any positive @ such that g(jw)+0,
then g(s) is said to satisfy the angle growth condition.
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III MAIN RESULTS

The following three theorems address the conditions on
&(s) andlor As) under which the closed-loop
continuous control system is stable for a connected
interval. Throughout this paper, all the coefficients are
assumed to be real. If this is not the case, an
interesting phenomenon happens. See Example 4 in
Section V for details.

Theorem 1: Consider a unity negative feedback
continuous~time control system with an open loop

transfer function 5(%?- with a cascaded proportional

compensator K. Assume that for a specific K», the
closed loop system is assumed to be stable. Under
these conditions, if g(s) satisfies the angle growth
condition, then the closed loop system is stable for the
connected interval including Ks.

Theorem 2: Consider a unity negative feedback
continuous-time control system with an open loop

transfer function ‘}(L':))- with a cascaded proportional

compensator K. Assume that for a specific K+, the
closed loop system is assumed to be stable, g(s)

satisfies the angle growth condition, and Anti(s) is
an antistable polynomial.  Under these conditions, if
&(s) satisfies the condition

2(s) = s'"%( D) g\ (s) Anti(s),

then the closed loop system is stable for the connected
interval including K.

Theorem 3: If _51(’%))_ touches the negative real axis

once or nontouches the negative real axis when the
angular frequency w sweeps from a zero to the infinity
excluding ® such that Rjw)#0, then the closed loop
system is stable for the connected interval K>0
provided that for a positive Kw*, the control system is
stable.

IV. APPLICATIONS OF MAIN RESULTS

The next two theorems address the conditions on g£(s)
under which the cloed loop discrete time control system
is stable for a connected interval.

Théorem 4: Consider a unity negative feedback
discrete-time control system with an open loop transfer

function %f;— with a cascaded  proportional

compensator K. Assume that for a specific K», the

closed loop sssystem is -assumed to be Schur stable.
Then if the following condition holds
22)=2"(az+b)

for k=0,1,2,, L 51,

then the closed loop system is Schur stable for the
connected interval including K,

Theorem 5: Consider a unity negative feedback
discrete-time control system with an open loop transfer

Junction £2) with a coascaded proportional
A2)

compensator K. Assume that for a specific K», the
closed loop sssystem is assumed to be Schur stable. Let
b(z)l be a monic quadratic polynomial and two roots of
¥(z) has one of the following three conditions:

i) Wz2) is antischur stable;
i) two roots of Kz) are nonnegative real, one root g,
is Schur stable and the other o, is not and the

d|+l
0]"1

- o+ . .
condition |T&:Ti'$ is satisfied;

ifi) two roots of W z) are nonpositive real, one root
0y is Schur stable and the other o, is not and the

+
condition IZI—_iIz Z:fi is satisfied
Under these conditions, for any i=(0,1,2,..., 1 % 1),

let g(z)=W&2)z" Then the closed loop system is stable
Jor the connected interval including K»,

The next theorem addresses the conditions on g(s)

under which the closed loop time delay continuous time
control system is stable for a connected interval.

Theorem 6: Assume that the denominator of the closed
loqp transfer function o the time delay continuous time
control system is described by

s
1+ ide —.

IR
Assume that for a specific K*, the closed loop system
is assumed to be stable. Under these conditions, if the
Jollowing two conditions

1) 2‘05 To + T

2) £(s) which satisfies the angle growth condition

holds then the closed loop system is stable for the
connected interval including K+
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V. EXAMPLES

To demomstrate the usefulness of theorems presented in
this paper, four examples are illustrated.

Example 1: (Continuous time control system)
Suppose that the denominator of the closed ioop
transfer function of the control system is

s+1

S P T TR

Since the numerator of the open loop forward transfer
function without a compensator is s+1 which satisfies
the assumption of Theorem 1, the interval for the stable
control system is connected; that is 23,3¢K{(35.7.
Beyond this interval, the system is unstable,

Example 2: (Discrete time control system)
Suppose that the denominator of the closed loop
transfer function of the control system is

1+ K- QOIS 2SN 43867
—2.72362" +2.46442~0.7408)

If we choose two zeros of the numerator of the open
loop forward transfer function, two roots are
2,=—0.2487 z,=—3.4667.
Since the inequality
a+1
R 207 (1-0.6017120.5522)

oy 1 o0 1
holds, by Theorem 5 we conclude that the interval for
the stable control system is connected; that is
0<K<17.6. Beyond this interval, the system is unstable.

Example 3: {Time delay control system)
Suppose that the denominator of the closed loop
transfer function of the time delay control system is

e "
1+ K-8y (5100,

Since the numerator of the closed loop transfer function
satisfies the assumption of Theorem 6, we conclude that
interval within which the closed loop transfer function is

stable is connected: that is 0<K< @ 1\/ piﬁ- wZ, where

@, is the least value which is the distance from the

origin to the root loci of the time delay control system
- crossing the positive imaginary axis.

Example 4 {Counterexample):

Suppose that the denominator of the closed loop
transfer function of the continuous time control system
is
1+ (s+1)

(0 5403 +70.845)(s° +0. 18s+0.082)

=0

Even through the numerator s+1 of the closed loop
transfer function satisfies the assumption of Theorem },
some of the coefficients of the denominator of the closed
loop transfer function are complex number. So we

cannot use Theorem 1. The interval for stablity is not
connected; when K=1 or K=0, the system is stable but
when K=05 it is unstable.

V1. CONCLUSIONS

We have presented the condition under which either a
feedback control system is stable for a connected open
gain interval. The condition may be described by a
frequency inequality in terms of the denominator and/or
numerator of the closed loop transfer function. We also
consider the conditions for the diserete-time control
systems and the time delay control system. We have
showed that this condition cannot be extended for the
complex transfer function via a counterexample. The
results in this paper may be the starting point of
searching conditions under which the control system is
stable for a union of disjoint connected intervals.

APPENDIX

Lemma 1 (Rantzer 1992)(3) If g(s) satisfies the
angle growth condition, then stability of As) and
f(s)+g(s) implies stability of As)+ Ag(s) for
A2€(0,D.

We present the proof of Theorem 1!

Step 1: By contradiction, there exists an interval such
that for two extremes (where K~ and K™) the closed-

foop system is stable but for an intermediate value the
system is unstable.

Step 2: We construct f* and 2" such that

F(s)=As)+K &(s)
2()=(K*-K)g(s

Step 3 Applying /°(s) and g°(s) to Lemma 1 and
note that g°(s) satisfies the angle growth condition, we
conclude the hypothesis that there exist an interval such
that for two extremes (where K~ and K* the closed
loop system is stable which contradict the hypothesis
that there exist an interval such that for two extermes
(where K~ and K7) the closed loop system is stable
but for an intermediate value the system is unstable.
Now we complete the proof. {1

Proof of Theorem 2 : The proof is similar to the
proof of Theorem 1 if we use following lemma. So we
skip the proof.

Lemma 2 (Kang (199421 If g(s) satisfies the angle
growth condition, then g(s)A(s)P(s) satisfies the angle
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growth condition where A(s) is antistable and monic
and P(s) is a monic polynomial having either all even
or all odd powers of s. Thus stability of As) and

Ks) +g()A(S)P(s) implies stability of

A+ Ag DA for 2€(0,1).

Proof of Theorem 3: If the assumption in the
theorem is stable, the root loci of the closed loop
transfer function passes the positive imaginary axis once
or nontouch the positive imaginary axis. So  the control
system is stable for a connected interval, Now we
complete the proof.

Proof of Theorems 4, 5 and 6 : The proofs are
similar to the proof of Theorem 1 if we use the
lemmas presented in Rantzer (1992)){3), Kang (1994))
[2} and (Kharitonov & Zhabko (1994))[4] respectively.
So we skip their proofs.

Lemma 3 (Rantzer (1992){3]: If g(s) satisfies the
discrete time angle growrh condition:

. Im(gge’:")) _
Sin 2 po(g(e™) ~ ™

Im{gle™)) _n
arc tan Re(g(e™) < ) +| |

2sin(w)
for we(0, )

where the derivative is well defined.
then Schur stability of As) and As)+g(s) implies
Schur stability of As)+ Ag(s) for Ae(0,1).

Lemma 4 (Kang (1994)){2) Let Hz) be a monic
quadratic polynomil and two roots of z) has one of
the following three conditions:

i} b(2) is antischur stable;

ii} two roots of b(z) are nonnegative real, one root oy
is Schur stable and the other o, is not and the

o+l +
condition I-—"%:I-IS ::_} is satisfied;

iti) two roots of b z) are nonpositive real, one root o;
is Schur stable and the other o, is not and the

0|+1

+
atl,, =7 is satisfied.

o—1 0

condition |
Under these conditions, for any 7€(0,1,2,..., 1 "g“ 1,

let g(2)=b(2)z". Then then stability of As) and
fs)+a(s) implies stability of . As)+ 1g(s) for
A€(0,1).

Lemma S (Kharitonov & Zhabko (1994)){4k

Suppose g()=g(e™ where g(s) is a real

polynomial.

Assume that
(1) 2, <tp+7n

(2) &(s) satisfied the angle growth condition.
then stability of As) and As)+g(s) implies stability
of A+ ag(s) for 2€(0,1).

REFERENCES

1. W. R. Evans (1948), "Graphical analysis of control
system,” Trans AIEE, Vol. 67, pp. 547-551

2. H. L. Kang (1994). "Extreme point result for robust
Schur stability,” pp. 467-470, Korean automatic Control
Conference.

3. A. Rantzer (1992). "Stability condition for polytopes
of polynomials,” IEEE Transactions on Automatic
Control, vol. 39, no. 12, pp. 2388-2397.

4. V. L. Kharitonov & A. P. Zhabko (1994). "Robust
stability of time delay system,” IEEE Transactions on
Automatic Control, vol. 39, no. 12, pp. 2388-2397.

- 1008 -



