Incompressible Turbulent Flow Simulation
of the Rotor-Stator Configuration
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1. INTRODUCTION

The turbine cascade flow analysis is essential to predict accurate performances of a turhine
vibration, fatigue break of blade, and turbine noise. The turbine stages comprised of
successive blade rows of stator and rotor are always associated with periodically unsteady
flows, and these periodic changes of flow variables have a considerable effects on the turbine
performances. Numerical methods for cascade flow analysis of turbine cascade range from
potential equation to Navier-Stokes equation diversely. Recently, approaches of inviscid flow
analysis using Euler equation and viscous flow analysis using Navier-Stokes equation have
been actively studied. Erdos[l], Gile[2], and Jorgenson{3] solved Euler equation using
MacCormack, Lax-Wendroff, 4th Runge-Kutta scheme, respectively. The full Navier-Stokes
equations are solved by Rai[4], Hah[5], Chimmal6], etc. But, most Navier-Stokes equation
solvers are based on compressible flows and are not efficient for analysis of low Mach
numbers(M<0.3) incompressible flow simulation. The major difficulty in solving incompressible
Navier-Stokes is that the governing equations are a mixed elliptic-parabolic type of partial
differential cquations. The continuity equation does not have a time derivative term and is
given in the form of a divergence-free constraint. The ahsence of a time derivative term in
the continuity equation prohibits integration of continuity equation by a time marching scheme.
The compressible Navier-Stokes equations, on the other hand, are efficiently integrated by
time marching schemes because they are a set of parabolic-hyperbolic partial differential
equations. The objective of present work is to apply the iterative time marching scheme for
accurately and efficiently simulating 2-dimensional incompressible flow through a turbine
stage.
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2. MATHEMATICAL AND NUMERICAL FORMULATIONS

2.1 GOVERNING EQUATIONS

Two-dimensional unsteady incompressible Navier-Stokes equations in  an  generalized
curvilincar coordinate system may be written as follows :

04, 0 p_ 9 _ =
T as(E E)+ a”(ﬁ F)=0 (n
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The contravariant velocities U and V are defined as
U= &tué, +ug,
V = ptung,+oy,
Here ] is the Jacobian of transformation and the quantities &, and 7, are presented for the

grid motion of the rotor. These quantities are given in terms of the velocity of the grid
(x.,y,) with reference to a stationary observers :

Er=—xL,—yL, (4
77I= _xr”x—yr”y

2.2 ITERATIVE TIME MARCHING PROCEDURE

The goal of present procedure is to advance the flow properties(p, u, v) from a known time
level ‘'n’ to the next time level ‘n+1’. First of all, let us consider the momentum equation.
Since the momentum equation is a parabolic type of partial differential equation, it can be
solved using a time marching scheme as follows :

Alr ( Zn+l_ En) + 85 —E—n+l + 6,7 frﬂ-l =65 E;ﬁ—l + 6,, 'F—;n+l (5)
where the barred quantities are the same quantities of Eq.(2) excluding the first row element.
For example,
~_ 1 u . E = 1 wlU+pé
= = ; = = * (6)
=7 [ v] Jj [ vU+ps,]

The above discretization of Eq(5) is the first order accurate in time. But, extension to second
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order accurate in time casilv achievable by replacing the first term of LHS in Eq.(3) by
3¢ "' — 49 + 77/ 24t The operators, 6 s and & , represent spatial differences. If

Newton iteration method is applied to solve this unsteady flow problem, Eq.(5) is rewritten as
follows :
1 ( —ntl k+]

TAN 4
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Following a local linearization of E, F, FE, and F: about the 'n+l'time level and at
the 'k’ iteration level,
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where o is relaxation factor and A, B are Jacobian matrices of the flux vectors E— E,,

F— F, respectively :

E-E, dF-F,
A - ._a(__._i"); B = ___g__r_l.; (9)
dq dq

and E"H'k is the residual vector, defined as :
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R - ar

—(85 En+l.lz+ 8,, F:n+l.lr+ 85 ‘E‘;n+l.k+ 6,, Fyn-#l.k) (10)

Note that LHS of Eq. (10) is the same form of discretized momentum equations, Eq.(5), at 'k’
iteration level and when _RT"H'k goes to zero, the momentum equations in their discretized

formm are exactly satisfied at each physical time step. The solution is independent of w, and
any approximations made in the construction of A, B and C. Next, let's consider the
continuity equation. As mentioned before, in order to solve incompressible viscous flow
problems efficiently, we need a relationship coupling changes in the velocity field with
changes in the pressure field while satisfying the divergence-free constraint. In the present
study, the Marker-and-Cell (MAC) approach{7] is used to link the iterative changes between

pressure and velocity, and can be written in curvilinear coordinate system :
n+l. bk

ath==s[ 7+ 57 an

where 4(p/N=(p/) "4 —(p/D"*"* and B is a relaxation factor, that may even vary

from node to node as in a local time concept. Again, when A4g¢ goes to zero, the continuity
equation is exactly satisfied at each time step, even in unsteady flows. Eq.(11) states that if a
cell is accumulating mass, then the pressure value at the next iteration is increased to repel
fluid away from the cell. If a cell is losing mass, then the pressure value is lowered to draw
fluid. Thus the pressure field is iteratively updated along with the velocity field until the
conservation of mass is satisfied. The spatial derivatives of convective flux terms are
differenced by using third order accurate upwind QUICK (Quadratic Upstream Interpolation
For Convection Kinematics) scheme[8] to reduce unphysical oscillations for high Reynolds
number flows, and the spatial derivatives of viscous terms are differenced using half-point
central differencing. The spatial derivatives of continuity equation is differenced with central
differencing and a fourth order artificial damping term is added to the continuity equation to
stahilize the present procedure. Combining the momentum equation, Eqn. (8) and the continuity
equation Eqn. (11), and applying the numerical discretization in time and space at all nodes in

the flow field, a system of simultaneous equation results for the quantity 49 equal to
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(a2 4% , 4%). The system may be formally written as :
] 7T

[ M { dq)=1{R) (12)
Here, since the right hand side { R}is the discretized form of the unsteady governing
equations, as long as {4gq} is driven to zero, the discretized form of unsteady Navier-Stokes
equation are exactly satisfied at physical time level 'n+1' . The steady state solutions are
obtained as asymptotic solutions of the time marching process. Although the matrix [M] is a
sparse and banded matnix, direct inversion of this matrix requires a huge number of
arithmetic operations. A common strategy in iterative solutions of elliptic equations is to
approximate the matrix [M] by another, easily inverted matrix [N]. In this studv. matrix [N]
contains only the diagonal contributions of matrix {M], and Eq.(12) becomes an explicit form
which is casier to be tailored for efficient execution on the current generation of vector or
massively parallel computer architectures than an implicit form. The flowfield over stator-rotor
configuration has viscous nature with complex features like interaction between stator and
rotor and interactions between trailing edge and boundary layer induced by suction side, etc.
Flow scparation and reattachment may also be present. To capture these flow details, a
viscous simulation with a suitable turbulence model is essential. In present work, the modified
Baldwin-Lomax model is implemented.

3. SLIDING MULTI-BLOCK TECHNIQUE

Since it is hard to generate a single grid system about very complex geometries, a domain

decomposition techniques are widely used. In this method, the overall domain is subdivided
into several blocks. In each block, a grid is generated separately and the flowfield is solved
independently of the other blocks. The boundary data for each block is provided by the
neighboring blocks. The present work decomposed the whole domain into four blocks as
shown in Fig. 1. The body-fitted H-grid is generated using elliptic partial equation[11] for
orthogonality and mesh-point clustering near the turbine stage boundary. Each block has 95x
51 grid points. Block #1 and 2 for the stator is stationary while block #3 and 4 for the rotor
is moving downward at given translational velocity. Therefore, the interpolation at block
interfaces between block #1, 2 and block #3, 4 is needed while satisfying the conservation
properties. A schematic of the grid at the interface boundary between stator and rotor is
shown in Fig. 2. Because block #3, 4 is sliding down, there is discord of bock interface line.
The present interpolation technique is followed by the method of Srivastava{l0]l. First, the
sliding interface boundary of the block #3, 4 is updated using the present iterative time
marching scheme. In order to update the flow properties at the node Blrefer to Fig. 2), the
grid line AB is extended until it intersects the plane I=Imax-1 of the second block at point C.
The flow properties are then obtained at point C by interpolating from the flow properties of
the I=-IMAX-1 planc using a Lagrangian polynomial interpolation. The node B is then updated
by taking the linearity of the values at node A and point C. But, in contrast to point B, it
scems that the node F cannot be extended to first block. Here the node F is updated by
using periodic condition. This process is repeated for all the nodes associated with I=1 plane
of the third and fourth block. Then all the node of block #1, and block #2 (eg. G, H, etc) is
obtained from updated flow properties of block #3, 4 by using interpolation.

4. INITIAL AND BOUNDARY CONDITIONS

The governing equations are always solved in the inertial frame. The use of inertial frame
"simplifies the governing equations because the centrifugal and Coriolis forces do not appear
explicitly. This approach is suitable for rotating blade or turbomachinery. The governing
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cquation (1) requires initial conditions to start the calculation as well as boundary condition at
every time step. In present work, the quantities dp, du and Jdw are initially set to zero at
all solid and fluid boundaries. The boundary values as well as interior values are iteratively
advanced from a time level 'n’ to ‘n+1’. On solid surface, the no slip condition is imposed for
velocity components. The surface pressure distribution is determined by setting the normal
gradient of pressure to be zero. The outflow boundary condition is obtained by which
pressure is freestream infinity, pe, and velocity is extrapolation from the interior points.

Since the flow is periodic {rom blade to blade, the periodic condition is used on each block
interfaces of passage boundary. The unsteady state calculation is started after the steady flow

is fully developed.

5. RESULT AND DISCUSSION

Fig. 1 shows body fitted grid elliptically generated around a VKI stator-rotor configuration.
The block number 1 and 2 is for the stator and is stationary. The block number 3 and 4 is
for the rotor and is moving downward at given translational velocity. Fig. 3 shows velocity
vector distribution in steady state, that is, both the stator and the rotor are stationary. The
small reversed flow region near the trailing edge was found. The steady state solution agrees
well to Kim’s numerical results[12]. From this figure, it is shown that velocity is accelerated
from leading edge at suction side of stator, however, in pressure side velocity is accelerated
apparently after 40% chord. In both side, rapid acceleration and sudden deceleration at near
trailing edge is resulted from large curvature variety of elliptic-type. The velocity vectors for
the rotor in steady state is shown in Fig. 3(c) and (d). The small reversed region near
trailing cdge of the rotor is also shown. The surface pressure distribution on the stator and
rotor surface is shown in Fig. 4. After the steady state solution is fully converged, the
unsteady state calculation is started. Fig. 5 shows the velocity vectors at several
non-dimensional time elapsed. Fig. 6 shows the velocity vectors and streamlines near the
leading edge of the rotor and shows the physics of the generation of the leading edge vortex,
its growing, and eventually busting of the leading edge vortex. The velocity vectors near the
trailing edge of the rotor at several time elapsed is shown in Fig. 7. And the completely
unsteady state motions of flowfield is found due to the relative motion of the rotor. Fig. 8
shows the surface pressure distribution on the stator and rotor surface. Compared with Fig. 4
form steady state solution, the vanation of surface pressure in the rotor part is much
significant and this make the flow through a turbine stage purely unsteady.

6. CONCLUSIONS

The numerical procedure has been developed for simulating incompressible turbulent flow
around a turbine stage. The governing equations of 2-D unsteady incompressible
Navier-Stokes equations are cast into the generalized curvilinear coordinate system and then
solved implicitly. For the accurate and efficient incompressible flow analysis, the iterative
time marching scheme having first order accurate in time and second to third accurate in
space was applied. The sliding multiblock technique is applied to handle a relative motion of
a rotor to the stator. The special treatments on these sliding block interfaces is needed to
maintain the conservative properties. The turbulent flows have been modeled by the modified
Baldwin-Lomax model. From present study, characteristics of flows of turbine stage which
consist of stator and sliding rotor were considerably well analyzed.
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Figure 4. Surface pressure distribution on the rotor and stator surface in steady state
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Figure 5. Velocity vectors from the unsteady state solution ( Rotor : moving downward )
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(a) at time = 0.35 (b) at time = 0467

(c) at time = 0.583 (d) at time = 059

Figure 6. Velocity vectors near the leading edge vortex in unsteady state
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(b) at 3/6 pitch moved
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(d) at 5/6 pitch moved

Figure 7. Velocity vectors changes at near trailing edge of rotor
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