Coshed/SAS: Groupware and User
Interfaces |

Jaeyoung A. Lee, Seok Hwan Yoon, Tonghyun Lee, Jieun Park

Abstract

Development in multimedia technology enhances Computer Supported Cooperative
Work(CSCW) such as tele-conferencing and tele-education. These applications are also
called groupware applications and usually composed of A/V conferencing module and
shared working space such as group editors. Through this shared working space users can
present, manipulate and save common artifacts interactively. Since users are allowed to
operate on common artifacts simultaneously, conflicts between user transactions are bound
to happen and can cause unnatural effects on user interfaces. In this paper we reviewed
these problems and presented common solutions to concurrency control problems. We also
presented Coshed/SAS, a group editor, as an example of groupware applications and

related concurrency control problems.

~132—

1

Introduction
The human to computer interface has been seen from a purely personal perspective until
recently. Applications generally provided single interface through which only one user
interacted and interaction with other users was considered to be less important.
Developments in networking and Computer Supported Cooperative Work (CSCW),
however, has created situations where applications provide multiple interfaces
simultaneously to a group of users. Users can co-work ina virtual shared workspace created
and maintained by CSCW or cooperative applications. Cooperative applications have been

considered as either collaboration transparent or collaboration aware[1].

Users of collaboration transparent applications are unaware that more than one interface
is presented to them. In contrast, collaboration aware applications are devised to interact
with a number of users by presenting a number of different user interfaces. Through the use
of collaboration aware applications users should be able to work in an environment, virtual
shared workspace, that simulates an ordinary collaboration environment in which users are
highly informed of other users’ activities. Imperfections of network, however, present
serious obstacles in mélintaining a unique copy of the workspace, which means users are
presented with different realizations of the shared workspace. The user interface
inconsistency is further distorted by simultaneous user inputs and can seriously degrade

effectiveness of groupware applications as CSCW tools.

In this paper, we review the problem of concurrency control in groupware and its effects
on user interfaces. The importance of concurrency control has been pointed out by many
researchers[2,3,4,5,6,7]. Recently, the impacts of concurrency control on user interfaces are
studied by some authors. We reviewed three basic concurrency control algorithms as the
compositional basis for other derived algorithms. We also studied of the effects of the
system topology and the replication scheme on the user interface. It is shown that all three
factors- concurrency control algorithm, system topology and replication scheme-can

seriously affect the logical consistency of the user interface and system performance.

—133—

2

Traditional concurrency control
Basic units of the client/server communication is fransaction[7]. A transaction is the
sequence of atomic operations, {ay, ay, ..., a,}, where a; is either read or write operation.
Transactions can be committed or aborted by the server. Clients can transmit transactions
independently from other clients' activities, which allows multiple transactions issued
simultaneously. Concurrent transactions T; and 7} are in conflict if atomic operations a; of T;
and a; of T; access common data object and at least one of them is write operation.
Confliting transactions can disturb data integrity. Various algorithms that detect and
resovlve conflicts among concurrent transactions-concurrency control algorithms-are
devised and applied with varying degree of success. Most of them are either combinations
or modifications of three basic mechanisms: locking[8], timestampl[9), and optimistic

concurrency control[10,11].

Locking A transaction can lock a set of objects for exclusive manipulation. As long as
a data item is locked by a transaction, any other lock request is denied. If the lock is for
reading the data item, the lock is read lock and write lock if it is for writing. If a transaction
T; has aread lock on a data item, a concurrent transaction 7; must not write until 7; commits

or aborts.

timestamp ordering In timestamp ordering based concurrency control scheme,

transactions are assigned with unique timestamps as they enter the server. A transaction
with earlier timestamp has higher priority than transactions with later timestamp. Each
operation in a transaction must be validated by the server when it is carried out according to

the priority rule based on timestamp.

optimistic concurrency control Optimistic policy of concurrency control assumes that

conflicting events rarely arrive and it is cost-effective to repair the adverse effects caused by
the out-of-order transactions than suspend current operations and -wait for the in-order
transactions. Compared to locking, optimistic concurrency control can enhance
concurrency of transaction processing but overhead of restoring occasional occurance of

out-of-order transactions can also be substantial in some cases.

Distibuted transactions

—134—

Distributed transactions involve more than one server and data can be distributed over the
servers or replicated. Besides concurrency control of transactions on local data items, there
must be a cooperative procedure used by a set of servers that enables the servers to reach
joint decision as to whether a transaction can be committed or aborted. As in the single
server case, locking, timestamp ordering and optimistic concurrent control policy can be

used.

3 Groupware and concurrency control

Groupware applications require another consideration over distriubed systems: Human-to-
Machine interface. User action of ordinary distributed systems such as banking and file
services is determined without knowledge of activities of other users of the system. In
CSCW environment, however, users must be aware of presence of other participants before
making any judgement. Transactions issued by users unaware of other users' activities can

conflict with each other and adversely affect the virtual shared workspace, the depository of

shared objects.

3.1 Real-time Groupware and user interaction
InteractioP is an action that is influenced by the presence of, knowledge of, or the activities
of another person. For routine collaborative activities, users can make decision with high
knowledge of other participants. In CSCW environments, however, user knowledge is
limited to the space(virtual shared workspace) provided by the system and user interaction

based on limited information can be errant.

Consider a graphical editor shared by a group of users. User 4 and B simultanesouly
operate on a centered circle by drawing a line passing through the center of the circle and
moving the circle up, respcetively. After a relaxation time the system becomes a consistent
state and the resulting digram is shown in the Figure 1. The final result mismatches both

users' intentions and additional corrective actions must be taken by the users.

— 186~

From this simple example it is obvious that the concept of unique shared workspace and
unique shared documents is an idealization of real world situation. Network delay distorts

the ideal emplementation of single copy shared workspace into possible multiple copy

] T TT | B TEE

Result of both users'

Original configuration .
operations

Figure 1: An example of a graphical shared editor

shared workspace. User action is displayed to other users with finite amont of time delay

which can mislead users to make incorrect judgement of what others are doing.

Conflicts of user interactions can happen frequently and unexpectedly. Without proper
mechanism of correcting conflicts, loss of logical context is unavoidable. Many algorighms
have been devised to prevent or restore the system from conflicts, and applied to real
applications with success of varying degree. The algorithms are combinations or v;ariations
of three basic algorithms given in Chapter 2. Each algorithm has unique impacts on user

interfaces.

locking Locking is most common in groupware applications. Before a user operate an
object he/she should request a lock on it. Depending upon the lock status of the shared
object, the replication server responsible for the lock management verify the request and
decide whether to grant or reject it. After a user acquires the lock, he/she has the exclusive
right to manipulate it. Other users who want to modify the shared object have to wait until
the lock is released by the owner. This behavior is radically different from collaboration

transparent applications which allows users to work on any object at any time.

The efficiency of locking-based algorithms is determined by the granularity of locking.

It is obvious that object table based lock is not ideal choice in most cases. Locking in

—136—

smaller units, on the other hand, does not always guarantee logical context. Consider the
previous example of shared graphical editor where users 4 and B try to operate on the center
circle. If each object is assumed to be locked independently the history of transaction
processing is unaltered and users' requests are processed unhindered. The logical
configurations both user intended to achive are still not achieved. On the other hand, if lock
is on the oﬁject table, adding new object to the table and modifying an object conflict with

each other and one must wait until the other is processed and shared workspace is updated.

timestamp ordering Transactions from clients in the timestamp ordering algorithms are
processed in the order of the timestamp issued according to a pre-defined rule. Timestamp
ordering achieves global serialization by issuing globally unique timestamps but the

concurrent processing of user transactions is hindered completely.

optimistic_concurrency control In groupware applications based on the optimistic

concurrency control mechanism, a user can proceed with his/her operations on shared
objects until the transaction is verified and committed. Transaction verification and
commitment is handled by the replication servers. If all servers decide to commit and
consensus among them is established, the originating client is notified and local object table
is updated. The user proceeds with his/her work unware of the process. Therefore, as long
as conflicting transactions rarely occur, the optimistic concurrency control algorithms give
cooperation aware applications the closest feel of cooperation transparent applications. If .
consensus is not established, however, and the transaction is aborted, the client must
process the abort message and roll back to the original consistent state. This process of

rolling back can be quite hard to implement and confusing to users.

Table shown below summarizes this section. If user interaction is frequent and
occurence of non-conflicting concurrent transactions such as read operations is common,
optimistic concurrency control can guarantee the best performance. But if transactions are
mostly write operations and conflicts among them occur frequently, locking algorithms
must be used. In real implementation where transactions are combinations of read and write

operations, appropriate mean between locking and optimistic concurrency control should

be considered.

— 187~

Concurrency depends |Effects on user Degree of

on interface concurrency
locking degree of granularity ljerky, slow response |low
timestamp ordering [implementation slowest response lowest
optimistic implementation recovery operation highest
concurrency control can be unnatural

3.2 'Server or not

Benefits of server-based or centralized architectures have been praised by many authors.
Advocates[12, 13, 14] point to such.factors as simple implementation of concurrency
control and reduction in necessary communication needed for a transaction to successfully
update all user interfaces. Replicated architectures also have followers for the issue of the
network latency and the fact that concurrenc processing of user inputs is drastically
hindered by the introduction of a server. It is obvious that write operation intensive
applications can benefit from the server-based architecture, andd read operation intensive

applications can benefit from the replicated architecture.

However, strict distinction in terms of centralized and replicated architectures is naive.
Distributed system architectures should be categorized according to two criteria, the
geometry of the system and the repliation scheme. Employment of servers decides
geometry of distributed system architectures. We refer servers as application instances
independent from clients that manage front ends such as user interfaces. Servers can be
located on client machines or on independent machines. In replicated systems, on the other
hand, multiple copies of object tables are distributed over the network. A subset of n+m
machines of the system may maintain replicated copies of the object table, where n
corresponds to the number of clients and m the number of servers. The geometry and the
replication scheme are two different factors that must be regarded independent from each
other. With this respect, above mentioned centralized system must be re-defined as single
server systems with no replication of object tables and the replicated systems as serverless
replicated systems. We can create many systems by varying the number of servers and the
replication scheme. It is obvious for the reasons presented before that efficient systems

should have replicated server architectures such as Fully Replicated Single Server

—138—

Architecture(FRSSA) employed by Coshed/SAS, a graphical shared editror developed by
ETRIL

Coshed

Figure 2: The structure of Coshed/SAS

3.3 Coshed/SAS and FRSSA
We have developed a shared graphical editor named Coshed/SAS. It allows more than one
user to manipulate a common document and independently save it to a local mass storage
device. In Figure 2, the SAC/SAS architecture of Coshed/SAS is schematically presented.
User interaction is viewed as if it is happening in a virtual shared workspace called Shared
Area, hence the name SAS(Shared Area Server). Since the Coshed/SAS system maintains
fully replicated object tables, there are n+1 distinct copies of the Shared Area, where 7 is
the number of participants of the session. As the title implies, the Coshed/SAS system has
client/server architecture or, more specifically, FRSSA. Messgaes between Coshed and
SAS are handled by SAC(Shared Area Client) module of Coshed and SAS. Concurrency
control is primarily based on locking. Transactions from clients are either sent to SAS or
broadcasted to other clients. Upon reception, SAS processes the messages and broadcasts to
all clients including the requester. Since each client has its local replicated copy of object
table, object table update messages are immediately applied to the table. As consensus
among replication servers is not required, FRSSA allows faster transaction processing.

Intensive read operations such as window redrawing, are instantaneous because of the

—189—

4

existence of local object tables. Messages of user interface related operations such as

telepointing are broadcaseted by the client to all clients.

oup bditur [Hiati

Figure 2: Coshed/SAS, a graphical shared editor .

Conclusion
In this paper we reviewed the inherent problem of concurrency control in groupware
applications and its effects on user interfaces. The traditional concurrency control
algorithms are divided into three categories, locking, timestamp ordering, and optimistic
concurrency control. Benefits and caveats of each algorithm are presented and the
algorithms are also reviewed in distributed systems as well as groupware applicatidn
systems. In Section 3, we compared the three algorithms in terms of users' feel and degree
of concurrency and found that both ends could not be achived simultaneoﬁsly to full
extents. The optimistic concurrency control algorithms, for example, guarantees the highest
degree of concurrency but recovery operations necessary in case of conflicting transactions
can be unnatural to users who are acustomed to coopération transparent applications. We
also considered the effects of the geometry of the system and the choice of replication
scheme on the system performance. By the geometry we refer mean number of servers
employed. Server-based system can efficiently reduce the number of connections necessary

to complete transaction requests and it is easy to implement concurrency control

—140—

algorithms. Replicated(serverless fuliy replicated) systems, on the other hand, enhances
read operations and concurrency of user inputs but makes implementation of concurrency
control algorithms difficult. We can summarize the paper by presenting two objectives and
three factors that affects system design.

o natural user interface i concurrency control algorithm
o Concurrency of userinput - - i geometry (number of servers)
i replication

We found that FRSSA (Fully Replicated Single Server Architecture) is one of the most
efficient architectures and an example of a graphical editor, Coshed/SAS, based on FRSSA and

a locking based concurrency control algorithm is reviewed.

References

[1] J.C. Lauwers and K. A. Lantz. Collaboration awareness insupport of collaboration
transparency: requirements for the next generation of shared window systems, CHI 1990

Proceedings, (CHI, 1990) pp. 303-310.

[2] C. A. Ellis and S. J. Gibbs, Concurrency control in groupware systems. In Proceedings
of the ACM SIGMOD International Conference on the Management of Data, (1989) pp.
399-407

[3] L. Grief, R. Seliger and W. Weihl, Atomic data abstractions in a distributed colléborative
editing system. In Proceedings of the 13th Annual Symposium on Principles of
Programming Languages, (1986) pp. 160-172.

{4] A. Karsenty and M. Beaudouin-Lafon, An algorithm for distributed groupware
applications. In Proceedings of the 13th International Conference on Distributed
Computing Systems ICDCS'93, (1993)

[5] M. Knister and A. Prakash, Issues in the design of a toolkit for supporting multiple
group editors. Computing Systems (The Journal of the Usenix Association), 6(2), (1993) pp.
135-166.

—141—

[6] R. E. Newman-Wolfe and H. K. Pelimuhandiram, MACE: A Fine Grained Concurrent
Editor, In Proceedings of the ACM COCS Conference on Organizational Computing
Systems, (1991) pp. 240-254.

[7] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems-Concepts and Design,
Addison-Wesley Publishing Company, Wokingham, 1994

[8] K. P. Eswaren, J. N. Gray, "The Notion of Consistency and Recovery in a Database
System," Comm. of ACM, vol. 19, no. 11. (1976) pp. 624-633.

[9] P. A. Bernstein, N. Goodman, Timestamp Based Algorithms for Concurrency Control
in Distributed Database Systems, In 6th International Conference on Very Large
Databases, (1980) pp. 285-300. '

[10] H. T. Kung and J. T. Robinson, "On Optimistic Methods for Concurrency Control,"
ACM TODS, vol. 6, no. 2, (1981) pp.213-226

[11] J. Huang, J. A. Stankovic, K. Ramamritham and D. Towsley, "Experimental
Evaluation of Real-Time Optimistic Concurrency Control Schemes," In /9th International

Conference on Very Large Data Bases, (1991) pp.35-46.

[12] S. R. Ahuja, J. R. Ensor, and S. E. Lucco, "A comparison of applications sharing
mechanisms in realtime desktop conferencing systems." In Proceedings of the ACM COIS

Conference on Office Information Systems, Boston, April 25-27 (1990) pp. 238-248.

[13] S. Greenberg, "Sharing views and interactions with single-user applications." In
Proceedings of the ACM COIS Conference on Office Information Systems, Boston, April
25-27 (1990) pp. 227-237.

[14] J. F. Patterson, R. D. Hill, S. L. Rohall, and W. S. Meeks, "Rendezvous: An
architecture for synchronous multi-user applications.” In Proceedings of the ACM CSCW

Conference on Computer -Supported Coopertive Work, Toronto, November 7-10 (1990)
pp- 273-280.

—142—

