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Abstract

Almost all hash functions suggested up till now provide security by using compli-
cated operations on fixed size blocks, but still the security isn’t guaranteed math-
ematically. The difficulty of making a secure hash function lies in the collision
freeness, and this can be obtained from permutation polynomials. If a permutation
polynomial has the property of one-wayness, it is suitable for a hash function. We
have chosen Dickson polynomial for our hash algorithm, which is a kind of permuta-
tion polynomials. When certain conditions are satisfied, a Dickson polynomial has
the property of one-wayness, which makes the resulting hash code mathematically
secure. In this paper, a message digest algorithm will be designed using Dickson
polynomial.

1 Hash function

A hash code is generated by a hash function as follows, where M is a variable size message,
and h{M) is the fixed size hash code.

H = h(M)

A hash code is appended to a message and the receiver verifies it by comparing the hash
code computed by himself to a received one. Since a hash function has no ability to
prevent forging, we cannot work only with a hash function. Instead, using a public key
cryptosystem, the hash code is encrypted by the signer’s private key.

Let V = {0,1}. We define VIUV?2UV3U---UV™ and VIUV2UV3U.- .. as V,,, Ve,
respectively, where V* means the k-fold Cartesian product of V.

Definition 1 For a function h : Vo, — V¥, if it is computationally infeasible to find
z # &' which satisfies h(z) = h(z'), h is computationally one to one, and a pair of strings
such as z,2’ is called the colliding pair of h.

Definition 2 If a function h : V,, — V* satisfies the following conditions, h is a (k-bit)
one-way hash function, and the one-way hash function, which is computationally one to
one is a collision free one-way hash function(Collision freeness).
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1. Given a string x € Vi, h is efficiently computed.

2. Given H, it is computationally infeasible to find x which satisfies H = h(z)(Weak
one-wayness).

3. Given z and h(z), it is computationally infeasible to find the pair x # x' which
satisfies h(z) = h{z")(Sirong one-wayness).

It is not easy to define a collision free one-way hash function. Thus a hash function
h : Voo — V¥ is defined recursively as follows, which is normally based on a primitive
function f: V™tk o Vk,

1. Represent a message M as the concatenation of m-bit strings: M = My||Mz]|- -+ ||Mn.
2. Initialize Hy = 1.

3. H;= f(Mi,Hi.)(s=1,2,3,-+, N)

4. H = h(M, I) = Hy(Hash code).

A primitive function f is defined as f(X,Y) = Ex(Y), where Ex(Y) means the
encryption of Y with X. The following theorem represents the relationship between
a hash function and its primitive function. It is necessary to make a secure primitive
function when making a secure hash function[1].

Theorem 1 For h whose primitive function is f, h is collision free if and only if f is
collision free.

2 Permutation Polynomials and Dickson Polynomi-
als

When f(z) = ao + a1z + a2x® + -+ - + anz™ is a polynomial over a finite field F, and its

degree is ¢ = p° for a prime number p, if f : ¢ = f(c) is a one to one mapping from F, to

F,, f(z)is a permutation polynomial. The permutation polynomial is not still well known,

and it is very hard to determine whether a polynomial is a permutation polynomial or

not. Recently, in the area of cryptosystem for the secure transferring of a message, it

has drawn much attention. The following theorem shows Hermite’s criterion for deciding
whether a polynomial is a permutation polynomial or not[2].

Theorem 2 (Hermite’s Criterion) f(z) permutes F, if and only if
1. f(z) has ezactly one root in F, and

2. for each integer t with 1 < t < ¢ — 2 where t # 0 mod p, the reduction of
[f(2)])t mod 2% — z has degree D (D < q—2).

In 1897, Dickson categorized permutation polynomials with a degree below 7 over
finite fields. The following is some examples of permutation polynomials.

e All linear polynomials are permutation polynomials.
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Function which guarantees onewayness
£: ¢ -> f({c) in GF(q)
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is n < m.
Figure 1: Using the property of one-wayness for security

o z* permutes F, if and only if (k,q—1) =1

e For a € F,, the following Dickson polynomial permutes F, if and only if (k,¢*—1) =

1.
Lx/2] .
gk(;p,a) = Z 7;%( k—~ J )( a) k-2 (1)

i=0

A Dickson polynomial has interesting properties. It is computationally infeasible to
get the inverse of a Dickson polynomial under some conditions. In order to explain it, we
define P{a) as follows.

Definition 38 For fized a € F,, the set P(a) of all Dickson polynomials gi(x,a) that are
permutation polynomials of F, is as follows. P(0) = {gx(z,0) : k € N,ged(k,q—1) =1},
P(a) = {gi(z,a) : k € N, ged(k,¢* — 1) =1} for a # 0.

Theorem 3 P(a) is closed under composition of polynomials if and only if a = 0,1, or
-1.

Refer to [3] for the proof of Theorem 3.
We can purposely choose the integer @ which is not 0, 1 so that there may not exist
the inverse gp(z, a), which satisfies gp(gg(z,a),a) = a by Theorem 3.

3 To strengthen the security of a hash function us-
ing permutation polynomials

The hash functions are defined as & : Voo — V¥ or f : V™% 5 V* recursively. As
explained in Section 1, it is necessary for a primitive function to have a collision freeness so
that the corresponding hash function can have a collision freeness. However, it is not easy
to design the primitive function that has a collision freeness, since |m + k| > |k|. Almost
all hash functions suggested up till now provide the collision freeness by complicated
operations on fixed size blocks. A permutation polynomial is the mapping f : ¢ — f(c).
The mapping by this polynomial satisfies the collision freeness. If this polynomial has the
property of one-wayness, it is suitable for a hash function. Figure 1 demonstrates this
concept.

The following shows the conditions for hash functions and the enhancement of the
security using a permutation polynomial.
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Figure 2: Attack the suggested hash function

e Collision freeness
First of all, a forger should evaluate D(M') which satisfies D(M) # D(M’) to find
the message pair (M, M') which satisfies M # M’ and h(D(M)) = h(D(M")). Even
if he succeeds in finding the message pair of (D(M), D(M’)), he would have to
compute D~1(M’) to obtain M’, which has the same hash code as M. This attack
can be prevented by choosing a permutation polynomial D(z) with the property of
one-wayness.

It may be possible to forge a message in another way, such as one in Figure 2. A
forger may directly obtain the forged message M’ without evaluating D~!(M'), but
this method of attack is prevented by a proper diffusion function. It is generally
difficult for this kind of attack to succeed because a forger has to attack without prior
knowledge of the transformation by a permutation polynomial, i.e. brute-forcely.

¢ Strong one-wayness
Given a message M and H = h(D(M)), finding M’ which satisfies A(D(M')) = H
requires finding D(M') which satisfies h(D(M')) = H and evaluating D~1(M'). The
property of impossibility of evaluating D~} (M') guarantees security against this way
of attack.

e Weak one-wayness
To compute M which satisfies A(D(M)) = H from a hash code H, one must compute
D(M) and finally D™}, which is impossible.

From the above observations, if it is impossible to compute D!, we can construct a
good hash function. The Dickson polynomial in section 2 is a good candidate. If we don’t
select a of Dickson polynomial g(M,a) as 0,£1, P(a) is not closed under composition
by Theorem 3. This means it is difficult to obtain the inverse function of the Dickson
polynomial gr(M, a).
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15 [ ¢2(15,2) [ 10 | ¢7(20,2) [ 5
21 ¢4:(16,2) | 22 | ¢,(21,2) | 17
17,2) | 1 97(22,2) | 21
18,2) [ 14 | g7(

19,2) | 18 | ¢7(24,2) | 13

97(0,2) | 01 g2(5,2) | 20 | g-(10,2) (
9:(1,2) |12 ¢:(6,2) | 7] ¢:(11,2) {
97(2,2) 116 [ g:(7,2) [ 11 | g2(12,2) | 6 | go(
(13,2) (
(14,2) (

g7(3,2) 4 g7(8,2) 24 g7 19 g7
9:(4,2) | 8191(9,2)| 3|97 23 | g7

Table 1: The values of Dickson polynomial when &k = 7,a = 2

3.1 Permuting a message using Dickson polynomial

The following is the algorithm which permutes a message using Dickson polynomial.

1. Choose ¢, which is a prime number.

2. Represent a message M with a number from 0 to ¢ — 1. This can be done by
splitting a message into many sub-blocks and then representing each sub-block with
a number.

3. For ¢ and Dickson polynomial gx(M,a), choose k which satisfies (¢° ~ 1,k) = 1.
This polynomial then permutes F,, as shown in section 2.

4. Choose a of gx(M,a) so that it may be the function of the length of a message. a
should not be 0,11, which makes it impossible to obtain the inverse of the given
Dickson polynomial by Theorem 3.

5. For chosen ¢, k, a, compute Dickson polynomial.

2 k—i
gk(M,a) = — ( j J

ey ) (—a) M*~% mod q

6. Publicize ¢, k, a for receiver to calculate the hash code.

The polynomial that results from after the above procedure is a permutation polynomial,
which satisfies the property of one-wayness. The following is an example of permuting a
message using a Dickson polynomial.

Let ¢ = 52 = 25 and a = 2. Find k which satisfies (k,¢* — 1) = 1 to make this
polynomial permute F,, where ¢* —1 =25% —1 =625 — 1 = 624

If we choose k = 7, then (¢* — 1,k) = (624,7) = L.

Gz 7 (7 aeg 7
gk(z,a) = go(2,2) = Y — (=2 ="+ - x6x -2 x2°
7 4 7
+gx5; ><4><.7:3+Zx4><(——2)3xx=x7—l4x5+56z3—56z

In table 1 we can see that the above polynomial permutes Fj.
Given a message stream = = 100, 3, 6,21, 70, this is mapped into g;(z,2) = 0,4,7,17,5
by this Dickson polynomial.
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3.2 How to evaluate the suggested polynomial efficiently
3.2.1 Some basic considerations

In this section, we’ll explain the algorithm that can evaluate a polynomial and combina-
tions efficiently . For computing a polynomial efficiently, we will use Horner’s rule.

Rule 1 (Horner’s rule)

u(z) = UpZ" F U127 Uz + ug up # 0
e ((...(un$+un__l)$+...)z+...)z+u0
In computing a polynomial u(z), n multiplications and n additions are needed. If there

are coefficients that are 0, then an equal number of additions are saved. Furthermore, this
algorithm does not need to store the partial results.

Dickson polynomial needs the evaluation of combinations and can be efficiently eval-
uated as follows.

a-1Y) _ (a —1)! _(a=b)(a=b-1) (a @)
b+1 )7 (b4+1)-(a—b-2) " a-(b+1) b
Using equation(2), we can evaluate the coefficients of Dickson polynomial, while eval-
uating this polynomial using Horner’s rule.

3.2.2 Evaluation of combinations and a polynomial

Using the previous section’s observation, we suggest an algorithm which evaluates Dickson
polynomial.

Evaluation of a polynomial: G is the coefficient of Dickson polynomial, and C is the
buffer for the evaluation of combinations. In equation(2), a and b correspond to k& — j, j
each. Horner’s rule is used and z is replaced with 2. The last result is stored in D.

e Step1: C—~1,D e 1,ta «—1,j « [_%_[,.Q:ZM2

e Step 2: . ;
oo k= QZJ—Q;‘ '+Ui)_. JQ'J 1) € mod g,ta — ta- (=a)
e Step 3:
Gﬁ_k%j-c-tamodq
o Step 4: D — (D -z + G) mod g

Step 5: j—j—1

e Step 6: Repeat Step 2, 3, 4, 5 until j =0
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Figure 3: Message Digest Algorithm

4 Combining a Dickson polynomial and a message
digest algorithm

If only the mapping using a permutation polynomial is used, we cannot get a fixed size
hash code such as & : Vo, —» V*. Thus, we need a proper message digest algorithm to
produce a fixed size hash code.

4.1 A proper message digest algorithm and its conditions

A forger can directly obtain y # = which satisfies H(z) = H(y) without computing D~*.
For example, if the message digest algorithm applied after mapping by a permutation
polynomial is not sensitive in replacing the position of some message blocks, a forger can
cause a collision easily by changing the position of some message blocks. However, this
method of attack is prevented by a proper diffusion function. It is difficult for this kind of
attack to succeed because the transformation of a message is related with a permutation
polynomial. Still, there are a few conditions to be considered. A

A message digest algorithm should satisfy the following conditions.

o The message digest algorithm must be computed efficiently, since the evaluation of
a Dickson polynomial is needed.

o All bits of a hash code should be dependent on all bits of the input and its order.

If a message digest algorithm satisfies the above conditions, it is secure despite its sim-
plicity.

We suggest the message digest algorithm which does modulo addition of the result
of the Dickson polynomial evaluation of M; and M;y;. This algorithm is sensitive in
replacing positions. It is also very fast. Figure 3 shows the suggested message digest
algorithm.

4.2 Combining a Dickson polynomial and a message digest al-
gorithm

In this section, we will combine the message digest algorithm of section 4.1 and the
Dickson polynomial that satisfies the properties of one-wayness and impossibility of the
composition. The message digest algorithm needs only to satisfy the conditions laid out
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in section 4.1. Therefore, the combined message digest algorithm is composed of just one
round.

The size of a message block is 128 bits, and the block is divided into four 32 bit sub-
blocks. Four 32 bit buffer A,B,C,D are needed to store the partial results. All additions
in this algorithm are defined as 23?2 modulo addition. We use the following function to
diffuse a message:

A = B+C+D, B = A+C+D, C = A+B+D, D = A+B+C
The entire message digest algorithm is described below.

e Step 1: Appending the padding bits
The message is padded so that its bit length is congruent to 16 modulo 128 (length =
16 mod 128). Padding is always added, even if the message is already of the desired
length. Thus, the number of padding bits is in the range of 1 to 128. The padding
consists of a single 1-bit followed by the necessary number of 0-bits.

e Step 2: Appending length
A 64-bit representation of the length in bits of the original message (before the
padding) is appended to the result of step 1. If the original length is greater than
264, then only the low-order 64 bits of the length are used. Thus, the field contains
the length of the original message, modulo 2%*.

e Step 3: Initializing buffers and Dickson polynomial’s parameters
Four 32-bit registers(A,B,C,D) are initialized to the following hexadecimal values
(low-order octets first):

= 01234567, B = 89ABCDEF, C = FEDCBA98, D = 76543210

The parameters of Dickson polynomial gx(M, a) over the finite field F, are ¢,k, and
a , which are chosen in the following way:

q is a randomly chosen prime number whose length is 32 bit. k is a 16 bit number
which satisfies ged(k,¢® — 1). The most significant bits of ¢ and k are always “1”.
a is the lower 8 bits of the length field which is evaluated in step 2. If a is 0 or +1,
do a — a+ 2%

e Step 4: Appending another padding bits
To prevent the forgery of k and ¢ chosen in step 3, k and ¢ are appended to the
message made in steps 1 and 2. Since a is dependent on the length of the message,
and the length bits have already been appended, it is unnecessary to append it.

e Step 5: Processing 128 bit message blocks
Update the contents of four buffers by the diffusion function defined prev1ously Add
(modulo 2°?) the next message sub-block to the updated values of buffers. Evaluate
Dickson polynomial for four 32 bit buffers and put them into four buffers. This is
one round, and the result after one round is again put into Dickson polynomial.
This procedure is iterated until it uses up all the message blocks. Figure 4 shows
this process.
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Figure 4: Processing 128 bit message blocks
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Figure 5: The final message form appended by the suggested hash code

¢ Step 6: Appending the digital signature
The values chosen in step 3 should be revealed for a receiver to evaluate the hash
code by padding them in the specific region of a message. The 128 bit value after
step 6, 32 bit value ¢, and 16 bit value k are appended to the original message.
Figure 5 shows the final form of a message.

5 How to attack the suggested hash function

5.1 Blind search of the colliding pair

If a forger tries to find the message which has the same hash code as the original one, he
should evaluate the hash function for each message of m of ¢ field elements. It takes mn
operations to evaluate a message with m sub-blocks, where n is the degree of a polynomial.

So O( fn -m!.mn) operations are needed. This, however, is computationally infeasible

because it requires the following number of operations, even when the message size is 128
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bits (the smallest one):

232 232(232 _ 1)(232 - 2)(232 _ 3)
4.4 . 918 = . 924 o, 9150
(4) 4-41-2 3o

5.2 Finding the other roots of gg(z,a) =y mod g

If there are the other roots of gg(z,a) = y mod g, a forger can attack the hash function
by replacing partial results with the other roots and modifying the original message.
However, because gg(z,a) = y mod q has a unique root z € GF(p™) for any b € GF(p™),
this attack is impossible[5].

5.3 Finding the decryption key of gg(z,a) =y mod g

It has been shown that P(a), the set of Dickson polynomials gx(z,a), is not closed under
the operation of composition in the case of a # 0,%1. Thus, gp(z,a) which satisfies
gp(ge(z,a),a) = x does not exist.

5.4 Solving gg(z,a) =y mod q

A forger may be able to obtain a forged message by colliding the hash code of a per-
muted message and then solving the equation for the colliding pair. D.G. Cantor and H.
Zassenhaus suggested the algorithm which can solve the equation in O(n® + n?log q)[4].
The suggested hash function uses the 16 bit number k and the 32 bit number ¢. It takes

O(( 322m )) operations to find the colliding pair of the message digest algorithm, where

m is the number of sub-blocks of the message and it takes O((2®)3 4 (216)? log 32) opera-
tions to find the root for the colliding pair. So a forger should do O(2%4™+!4) operations to
find a forged message from the given hash code. This attack is computationally infeasible.

5.5 What else?

To be secure against the birthday attack, we chose the hash code with the length of 128
bits. Because the suggested hash function uses the property of one-wayness, it is secure
against a meet-in-the-middle attack.

6 Conclusion

We suggest the hash function through which security is guaranteed mathematically using
Dickson polynomial. Dickson polynomial permutes the finite field when some conditions
are satisfied. Furthermore, it has the property of one-wayness when we choose a special
parameter for it. Using these two special properties, we suggest the hash function which
satisfies a weak one-wayness, a strong one-wayness, and a collision freeness. We also
observe various cryptanalysis and conclude that the suggested hash function is secure
mathematically.
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