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A Pressure Stabilization Technique for Incompressible Materials

= %

o] A3” A AR
Lee, Sang-Ho Kim, Sang-Hyo

ABSTRACT

Mixed finite element formulations for incompressible materials show pressure oscillations
or pressure modes in four-node quadrilateral elements. The criterion for the stability in the
pressure solution is the so-called Babuska-Brezzi stability condition, and the four-node
elements based on mixed variational principles do not appear to satisfy this condition. In this
study, a pressure continuity residual based on the pressure discontinuity at element edges is
used to study the stabilization of pressure solutions in bilinear displacement-constant pressure
four-node quadrilateral elements. It is shown that the pressure solutions, although stable,

exhibit sensitivity to the stabilization parameters.

1. Introduction

The four-node quadrilateral element is the workhorse of nonlinear finite element analysis
because of its simplicity and versatility. However, when the element is implemented with full
quadrature, it locks for incompressible materials in a phenomenon called volumetric locking.
One remedy for this difficulty is selective-reduced integration, Hughes (1977). When this
procedure is applied to volumetric locking, the hydrostatic, or pressure terms are integrated
using a single quadrature point, whereas the deviatoric terms are evaluated by full quadrature.
It became clear subsequently through the discovery of the equivalence principle by Malkus and
Hughes (1978).

In the past decade, the performance of the quadrilateral element has been enhanced by
using two field (Hellinger-Reissner) and three field (Hu-Washizu) variational principles.
MacNeal (1993) shows an extensive account of the mechanics of overcoming volumetric
locking. When the displacement of the nodes is such that the volume of the element is
preserved, the strain field is equivoluminal throughout the element. This is the key to avoiding
volumetric locking. Unfortunately, a byproduct of designing this property into the strain field
is that the element then fails to meet the Babuska-Brezzi conditions. As a consequence, in

some meshes, the pressures alternate in sign in a phenomenon called ckeckerboarding, wherein
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the pressures alternate. This malady is a result of the rank-deficiency of the equations for the
pressure.

Hughes and Franca (1987) have developed a new methodology whereby the pressure
oscillations are eliminated by adding the squares of the equilibrium equations and pressure
discontinuities to the variational principle. However, in the use of this formulation, the
relationship between the accuracy of displacement and pressure solutions and the stability
parameter needs detailed study. In this paper, the Hughes-Franca stabilization procedure and
the sensitivity of solutions will be studied in the four-node quadrilateral elements.

2. Incompressible Elasticity Formulation for the Stabilization of Pressure

The standard displacement-pressure formulation of isotropic incompressible elasticity is:

divo+b=0 in Q) , (1)
diva=0 inQ, )
g =2u€ - pl inQ, ©)
u=u" onT,, on=t" onT,. @

Here 0 is the Cauchy stress tensor, b is body force, u is displacement (or velocity in fluid
mechanics), | is shear modulus (or viscosity in fluid mechanics), p is pressure, I is the identity
tensor, and € is the symmetric part of the displacement gradient. Equation (2) gives the
incompressibility condition.

The weak form for isotropic incompressible materials is

j deT2pe dQ J 3(div u)Tp dQ j Sp(div u) dQ =j duTb dQ +j SuTt*dr (5)
Q Q Q Q l‘t

This weak formulation is not stable for pressure solutions unless specific displacement and
pressure interpolations are chosen. In particular, pressure oscillations, or pressure modes
(often called checkerboarding) occur in the bilinear displacement-constant pressure four-node
quadrilateral element (Q1P0).

Hughes and Franca (1987) modified the weak formulation as follows to stabilize the

pressure

_[ deT2pe dQ J' 8(div u)Tp dQ j dp(div u) dQ
Q Q Q
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where o and B are nondimensional stabilization parameters (=0 and 3>0), h is the length
parameter of the mesh, and [[-]] is the jump operator. The domain Q denotes element interiors,
and T consists of the element interfaces. The above weak formulation involves the addition of
"least-squares” forms of the following residuals: the equilibrium equation residual and the
pressure continuity residual on element interfaces. These terms render the formulation to be
coercive, in contrast to the classic Galerkin formulation, and enable the Babuska-Brezzi
condition (Babugka, 1971 and Brezzi, 1974) to be avoided. Thus this formulation can provide
stable pressure solutions for seemingly arbitrary combinations of displacement and pressure
interpolations. In the above formulation, however, a careful choice of the parameters is

required to prevent a loss of accuracy in the solution.

3. QBI Element Formulation Using y-Projection Operator

For isotropic incompressible materials, the stress ¢ can be split into two parts as

Gjj = Tjj - Pdy;- (7)

Here, T denotes the deviatoric stress given by T = 2u€ij = 2ueij where € is the deviatoric

L . . 1
strain, p is the hydrostatic pressure definedasp=-—¢c

nsa Cii and Sij is the Kronecker delta.

The three-field Hu-Washizu variational principle for this material is
HW 1 ext
The matrix form of (8) with a pressure continuity residual for stabilization of pressure is

"V, €, 1,p) = IQ[ Le™p*e-1"(e- V) - p(div |dQ - g _[ F[[p]]z dr - wet  (9)

= h
where f = [-32-— The above functional, when the pressure residual term is excluded, is the
)

standard Hu-Washizu form for incompressible materials where p is the Lagrange multiplier on
the isochoric constraint u; ; = 0. For nearly incompressible materials, a perturbed Lagrangian

approach is taken where an additional term, 511 p?, is added to the functional. Taking stationary

condition then gives the following weak form (QBI-HF):

IQ[SsT(DdeVe 1) - 811 (€ - V. u) - 3p(div u) + 8(V w) "1 - 5(div u)"p)]dQ

-BJF[[Sp]][[p]] dr - W = 0. (10)
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4. Numerical Examples

The accuracy and the stability of displacement and pressure solutions in four-node
quadrilateral elements will be studied for various values of the stability parameter B. Note that

when the parameter P is equal to zero, i.e. [_3 =0, the weak form (10) becomes the conventional

formulations which fail the Babuska-Brezzi stability condition.
For the convergence study, the displacement norm (L, norm) can be calculated as

displacement norm = [j (- uh)T(u - ub) 4@ ]2 (11)
Q

For incompressible plane strain, energy norm can be decomposed into the deviatoric energy

norm and the pressure norm as
deviatoric energy norm = [—;—J‘ € - en)TD"(e - €h) dQ ]"2, (12)
Q
pressure norm = [I @ -p»T(p - ph) d@ ]2 (13)
Q

Timoshenko Beam Problem. The test problem is a linear, elastic cantilever with a load P
at its end as shown in Fig. 1. In the convergence study of this beam problem, incompressible
material or nearly incompressible materials are considered because both volumetric locking and
pressure oscillations (or pressure modes) occur in this case. A state of plane strain is assumed.

The convergence rates of displacement norms by QBI-HF are shown in Fig. 2. The rates
of convergence of displacement norms are approximately O(h?). The convergence rates of
deviatoric energy norms and pressure norms are shown in Fig. 3 and 4, respectively. The rate
of convergence is approximately O(h h.

The pressure solutions of QBI-HF for the prescribed displacement boundary conditions

are shown in Fig. 5, where the pressure distributions at x = 22.5 for various values of B are
compared with exact pressures. The pressure solutions of Simo-Rifai are also presented. The
pressure solutions show an oscillation for §<0.0001, and the solutions become erratic for
B>0.1. In other words, the pressure solutions are unstable for small 3 values, and they seem
to be stable but not accurate for large B values in which the accuracy of displacement solutions
is also poor. For the range of 0.001<B<0.1, the pressure solutions are stable and accurate and
the displacement solutions are accurate. These phenomena can be observed more clearly in the
next example. ,
Pressure Modes in Timoshenko Beam Problem. In order to capture the pressure
modes in the beam, the boundary condition at x = 0 is modified so that uy = 0 at points B and
C of Fig. 1. The introduction of this perturbation makes the pressure solutions of the beam
problem highly oscillatory for unstable elements.
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The pressure distributions at x = 22.5 for various values of B under the additional

displacement perturbation condition are shown in Fig. 6. The pressure distributions of Simo-
Rifai and other elements exhibit the pressure modes under this constraint condition. In Fig. 6,
the pressure distributions for small § values ($<0.0001) are not shown because the pressures
oscillate severely. As P increases, the oscillations diminish and the pressure solutions become
stable and accurate. For large B values (B>0.1) the pressure solutions become erratic.
Driven Cavity Flow Problem. The last example is the well known driven cavity flow
problem. The geometry of the model is shown in Fig. 7. Two different boundary conditions
have been used; one of which, Case A (often called 'leaky lid' boundary condition), causes
pressure oscillations and the other, Case B (often called 'ramp over one element' boundary
condition), causes pressure modes in conventional finite element analyses. In this example, the
stability parameter f = 0.01 was used.

The distribution of pressures at y=0.35 for QBI-HF and other several elements is shown
in Fig. 8 where the boundary condition Case A has been used. The smoothed curve obtained
by post processing, see (Lee et al., 1979), is considered as the benchmark solution. The
pressures of QM6, Simo and Rifai's element and ASQBI are oscillatory whereas those of QBI-
HF are stable and accurate. The distribution of pressures in the boundary condition Case B is
shown in Fig. 9. This boundary condition makes the pressure solutions of conventional
methods more unstable. The pressures of QM6, Simo and Rifai's element, and ASQBI show
severe checkerboarding and could not be shown in Fig. 9 without obscuring the benchmark
solution. The pressures of QBI-HF are also stable in this case.

5. Conclusions

The stabilization procedure of Hughes and Franca has been studied in the context of a
four-node quadrilateral element with a strain field designed to avoid volumetric locking. It has
been shown that this stabilization avoids the pressure oscillations which plague these elements
for incompressible materials. The sensitive of the stabilization parameter is summarized below:

1) For 0<B<0.001: Pressure oscillations or pressure modes can not be eliminated
successfully.

2) For 0.001<B<0.1: Pressure oscillations or pressure modes are eliminated successfully.
Pressure solutions are stable and accurate. Displacement solutions are still accurate (there is no
significant loss of accuracy in the displacement solutions).

3) For 0.5<P<10.0: Pressure oscillations or pressure modes are eliminated but the
pressure solutions become poor as P increases. The displacement solution loses its accuracy as

B increases.
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Fig. 1. Timoshenko beam bending problem Fig. 2. Convergence rates of displacement

norms in QBI-HF
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Fig. 7. Driven cavity flow model
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Fig. 8. Pressure distributions at y = 0.35 in the driven cavity flow problem with the boundary condition
Case A (v = 0.4999 in QM6, Simo-Rifai, and ASQBI; v =0.5 and B = 0.01 in QBI-HF)
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Fig. 9. Pressure distributions at y = 0.35 in the driven cavity flow problem
with the boundary condition Case B (v = 0.5 and B = 0.01 in QBI-HF).
* Simo-Rifai and other elements show severe pressure modes.
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