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Abstract

The merit of fuzzy rule based systems stems from their capability of encoding qualitative knowledge of
experts into quantitative rules. Recent advancement in automatic tuning or self-organization of fuzzy rules
from experimental data further enhances their power, allowing the integration of the top-down encoding of
knowledge with the bottom-up learning of rules. In this paper, methods of self-organizing fuzzy rules and
of performing defuzzification and inference is presented based on a multi-resolution radial basis function
network. The network learns an arbitrary input-output mapping from sample distribution as the union of
hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-ellipsoidal clusters, representing
fuzzy rules, are self-organized based on global competition in such a way as to ensure uniform mapping
errors. The cooperative interpolation among the multiple clusters associated with a mapping allows the
network to perform a bidirectional many-to-many mapping, representing a particular form of defuzzification.
Finally, an inference engine is constructed for the network to search for an optimal chain of rules or situation
transitions under the constraint of transition feasibilities imposed by the learned mapping. Applications of the
proposed network to skill acquisition are shown.

1. Introduction

Fuzzy rule based systems have been regarded as a better, if not best, alternative to conventional expert
systems based on symbolic logics due to their descriptive power associated with fuzzy membership
functions [19]. They provides more precise encoding of expert knowledge as well as smoother setting of
decision boundaries beyond the binary logics that conventional expert systems offer. Furthermore, the
capability of transforming qualitative knowledge into quantitative rules with both fuzzy membership
functions and defuzzification schemes makes fuzzy rule based systems a powerful tool for connecting
between symbolic and numeric world. Consequently, during the past decade, there have been demonstrated
numerous applications of fuzzy rule based systems to real world problems that successfully transform expert
knowledge into machine intelligence [13,16,18].

Recent advancement in automatic tuning or self-organization of fuzzy rules from experimental data
further enhances the power of fuzzy rule based systems, since it allows the integration of the top-down
knowledge encoding with the bottom-up rule learning. In other words, rules from expert knowledge of
limited precision can be fine-tuned based on learning from experimentation. To this end, researchers have
found it attractive to integrate the well-established learning capability of neural networks into the architecture
of fuzzy rule based systems [14, 15, 17, 21]. This has brought forth, so called, neuro-fuzzy or fuzzy-neuro
architectures, where, e.g., fuzzy membership functions of a Gaussian shape are implemented with neural
networks of sigmoidal activation functions. Neural networks are known to be capable of learning arbitrary
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input-output mappings from training, where the training aims at achieving accuracy as well as generalization
of the mapping represented by training samples [7, 8, 9, 10]. Neural networks have been applied more to
the bottom-up process of learning mapping relations, in contrast to fuzzy rule based systems which concern
primarily the top-down process of implementing expert knowledge. However, a compelling need to
integrate the two exists, so as to combine the strengths of both and compensate for the weakness of another.
For instance, there is a need to refine fuzzy rules generated from imprecise knowledge, and, also, there is a
need to incorporate higher level knowledge in neural network learning to achieve better generalization under
a limited number of samples {5, 11].

It is not so difficult to realize that radial basis function neural networks, which describe a mapping in
terms of a weighted summation of a set of radial basis functions such as Gaussian or inverse distance
functions, may function as a general form of neuro-fuzzy systems [20]. In radial basis function networks,
an input-output mapping is represented as a set of locally defined sample clusters described by a radial basis
function, such that such local clusters can serve as mapping rules in a fuzzy form [22, 23, 24, 25, 26, 27, 28,
29].

Attemnpt has already been made to generate fuzzy rules from a radial basis function network [4].
However, the full capacity of radial basis function networks in conjunction with fuzzy rule based systems
is yet to be explored. The current practice of radial basis function networks often poses the following
probiems to solve:

1. The representation of a mapping based on the uniform size of local clusters may be neither efficient, due
to the possibility of generating an unnecessarily large number of local clusters, nor easy for achieving a
balance between the accuracy and generality in mapping.

2. The network may not be capable of representing a general mapping including a many-to-many mapping,
and may not allow an inverse mapping of an arbitrary nonlinear mapping.

3. No clear connection between the mapping in radial basis function networks and the defuzzification in
fuzzy rule based systems has been established. Furthermore, no attempt has been made to date to construct
an inference engine associated with radial basis function networks. In this paper, methods of self-orga-
rizing fuzzy rules and of performing defuzzification and inference is presented based on a multi-
resolution radial basis function network. The network learns an arbitrary input-output mapping from sam-
ple distribution as the union of hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-
ellipsoidal clusters, representing fuzzy rules, are self-organized based on global competition in such a way
as to ensure uniform mapping errors. The cooperative interpolation among the multiple clusters associated
with a mapping allows the network to perform a bidirectional many-to-many mapping, representing a par-
ticular form of defuzzification. Finally, an inference engine is constructed for the network to search for
an optimal chain of rules or situation transitions under the constraint of transition feasibilities imposed by
the learned mapping.

This paper is organized as follows: In Sec. 2, the proposed multi-resolution radial basis function network
is presented, where the construction of local clusters based on globally competitive learning and the locally
cooperative interpolation for a many-to-many mapping are described in subsections. In Sec. 3, the inference
engine based on dynamic path planning is presented. In Sec. 4, applications of the proposed network to skill
acquisition are shown as case studies.

2. Multi-Resolution Radial Basis Function Network
An input-output mapping, y=f(x) , xe R" and y& R™, can be represented by a collection of samples,
(x,y) , distributed in the (n+m)-dimensional input-output space, z=(x,y) . The representation of a mapping

based on a collection of samples in the input-output space is quite general, which can be applied to arbitrary
mappings with nonlinear as well as many-to-many relations.

-125—



The proposed Multi-Resolution Radial Basis Function (MRBF) network aims at learning the mapping
relation between x and y by approximating the sample distribution, z=(x,y) , based on the union of local
sample clusters of a hyper-ellipsoidal shape (refer to Fig. 1). More precisely, a local cluster, C , is represented
as a hyper-ellipsoid, C(z;¢,X,r), with ce ) i representing the center or reference point of the cluster, X,
the (n+m)x(n+m) dimensional positive definite shape matrix, and re R , the size or radius of the cluster, as
follows:

Clzse,ZP={ze R z—c) 2 z-c)<r)

The center, ¢, and shape matrix, Z, of a cluster are respectively from the mean and covariance of the
local samples that belong to the cluster. The local clusters thus generated play a role as fuzzy rules.

The training of the MRBF network for learning an input-output mapping involves the self-organization
of the necessary number of local clusters of various locations, shapes, and sizes in such a way as to achieve
the desired mapping accuracy uniformly throughout the domain of interest. The self-organization of the
network involves the automatic recruitment of local clusters to cover the mapping samples, while the
locations, shapes and sizes of clusters are updated iteratively to improve the mapping accuracy uniformly to
a desired level. The algorithm for self-organizing the network is referred to here as Globally Competitive
Clustering Algorithm, as described in detail in Section 2.1.

A mapping is defined in the MRBF network firstly by selecting the local clusters in which the given
input, x , reside within their boundaries. Each of the selected local clusters generates an output, y , by taking
the sample point associated with the given input, x , that represents the minimum Mahalanobis distance [3]
from its center, where the distance, d(z;C), is measured in terms of the shape matrix of individual local
clusters:

1
d(z; C)={(z—c) T):(z—«:)}2

The outputs from individual local clusters corresponding to the given input are then grouped based on
their degree of proximity. That is, each group includes those outputs of close proximity that are to be fused
into a single output for the group. The existence of multiple groups in a mapping thus implies the existence
of multiple outputs, resulting in an one-to-many mapping. The above algorithm for mapping with the MRBF
network is referred to here as Locally Cooperative Interpolation Algorithm as described in detail in Section
2.2.

2.1 Globally Competitive Learning of Local Clusters

150} i

0 700 %00 300

Figure 1: A many to many non-linear mapping represented by a collection of samples (small
circles) in the (x,y) space is approximated by a collection of hyper-ellipsoidal clusters of various
sizes, shapes, and locations.
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The globally competitive learning of local clusters for an input-output mapping is based on the following
concept:

1. The location of a cluster center is determined by the samples assigned to the cluster, where the assignment
of a sample to a cluster is based on the winner-take-all inter-cluster competition. That is, a sample will be
assigned to the cluster having the minimum Mahalanobis distance from its center to the sample.

2. The number of clusters are determined in such a way that every sample which is not an outlier is covered
by at least one cluster. A sample is said to be covered by a cluster if the sample is located inside the cluster
boundary.

. The shape of a cluster is determined based on the covariance of the samples that belong to the cluster.

4. The size of a cluster is determined based on the mapping accuracy of the samples covered by the cluster.

Should a cluster fail in the evaluation of mapping accuracy, its size should be reduced accordingly.

5. The locations, shape, and sizes of individual local clusters are determined based on hierarchical learning.
It starts with a small number of local clusters of a large size and spherical shape, but refines and reduces
their shapes and sizes, respectively, while increasing the number of local clusters by recruiting new mem-
bers, as necessary for the desired mapping accuracy.

W

There can be many ways of constructing an algorithm for the implementation of the above learning
concept. Here, an algorithm based on the iterative update of the location, shape, and size of a cluster is
presented, as follows:

Algorithm: Clustering with Iterative Update
Input:

{z qk =y ).i=1,..,N j} - a set of samples stored in a relational data-base.

ry: the initial cluster size.

E,y: the error threshold for overall mapping performance in L, - or L_, -norm.

Output:

{C JCJ:C(z;c j,Z j,rj)J=1,...,N -} © a set of local clusters defined in terms of their centers, shapes, and
sizes.

Method:
Step 1: Initialization.

Pick up a sample, z,, randomly and assign a cluster, C;, such that ¢\=z,, Z,=I . and r=r;. Set the
current number of learning cyclies, k, as k=1, and the current number of clusters, N ¢»as N C=1 .
Step 2: Self-Organization of Clusters with the Iterative Update of their Locations and Shapes.

Repeat the following process for the set of stored samples at the k th learning cycle:

a. Pick up a sample, z;, randomly.

b. Determine the cluster, C, having the minimum Mahalanobis distance from its center to z;
as the winner of the sample, as follows: d(zi;Cw)=’"é"d(zi;C')

c. If z; is within the boundary of C_, i.e., (zrcw)):;,l (z;—cw)Srvzv , then, adjust the current
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center, ¢, and the current shape, Z,, of the cluster by
€ € Foln )(z—~¢, )
T
L L +B(n )z Nz<,) .

where the learning rates, o(n,) and B(nw) , are monotonically decreasing positive func-
tions of n  , the winning number representing the number of times that C_ has been
selected as the winner. The size of the cluster remains same as before, while the shape
matrix should be normalized after the update in order to keep the volume of the cluster
unchanged.

d. Otherwise, set N C=N C+1 and generate a new cluster, C N, such that ¢ Nc=z i ZNC=I [

and rNc=rk
Step 3. Evaluation of Overall and Local Mapping Performance

Present all or part of samples randomly to the network to evaluate the overall mapping performance,
E, defined in terms of L, - or L_, -norm of the mapping errors between the reference and network
outputs. The network outputs are obtained by the cooperative interpolation mapping algorithm
described in Section 2.2. At the same time, evaluate the mapping performance, E i of individual local

clusters, C T in terms of L, - or L_ -norm of the mapping errors for the samples covered by C T for

j=1,..N_.

Step 4. Repetition of Update Process for Error Convergence

If the overall performance is satisfactory, i.c., E<E|, then stop. Otherwise, delete C Y from the current

NC

list of clusters, if Ej>—A}—CZEl for j=1,...,.N e Set N C(—N C—N P with N P representing the number of
=1

deleted local clusters, r,«~Yr, with T representing a positive number of less than unity, and k=k+1 .

Then, go to step 2 and repeat the process with surviving clusters of updated shapes and sizes.

Fig. 2 illustrates, in a snap shot fashion, the generation of two different sizes of clusters based on the
above clustering algorithm. In Fig. 2(a), 7 clusters of arelatively large size are generated initially. In Fig. 2(b),
Clusters 3 and 7 are deleted based on the local performance evaluation. Then, in Fig. 2(c), four smaller
clusters are newly generated to cover the samples of the deleted clusters. Notice that the shapes of the larger
clusters are changed continuously as learning progresses.

2.2 Locally Cooperative Interpolation for Mapping

The set of local clusters self-organized by the MRBF network provides a compact representation of an
input-output mapping in an approximated and generalized form. In this section, it will be shown that the
MRBF network allows an accurate estimation of mapping output corresponding to a given input based on the
cooperative interpolation among those clusters that contain the given input within their boundaries:
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Step 1: Forming a Set of Active Clusters.

For a given input x_, all the clusters that intersect the hyperplane, L, defined by

o+ . . . .
L={z=(xy)eR ”‘1x=x <} become active. Let us denote the set of active clusters for a given input, X,

as Flx) :

Fx )={ CIILsmCJabOJE 1,...,N.}
Step 2: Estimation of an Output from Each of Active Clusters.
Estimate an output, y it from each of the active clusters, C s in the set F(x ), by identifying the point,
min

zJ=(yj,x s) , on the hyperplane Ls such that d(Zj2Cj)=ze Lsd(zj;Cj) .

That is, we select the point, z, on the hyperplane, L, that represents the minimum Mahalanobis dis-
tance from the center of the cluster.

Step 3: Grouping the Outputs from Individual Clusters.
Collect all the outputs, y s generated from individual clusters, C T in the set F(x ), and partition them

into groups, G;, based on the measure of their proximity. The groups thus generated are referred to
here as the interpolation groups.

Step 4: Fusing the Outputs of Each Interpolation Group.

The outputs, {y j} , that belong to an interpolation group, G, are fused into a single output, _): ;» based

}:i:y;?i&jyj ;

where § T 3 j=1 , is the summation weight determined based on the Mahalanobis distance of y i
¥i€0;

on the following:

d(zj;C j) , and the number of samples in Cj for all i ¥E G; . Note that the above grouping and fusion

(c)
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Figure 2: Snap shots representing the generation of clusters of various shapes and sizes. The
asterisks and small circles represent respectively the cluster centers and the sample points: (a)
The result of clustering based on the data with an initial radius of 40. (b) Clusters 3 and 7 are
deleted because of their poor performances compared to other existing clusters. (¢) Clusters 8-11
are newly generated with the reduced radius of 30.
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processes can be further elaborated in terms of a data fusion technique based on statistics, owing to
the fact that each local cluster represents the distribution of samples within. For instance, it is possible
to define the proximity between the two outputs based on the concept of statistical support between
the two data, such that the grouping can be done by analyzing the supporting structure of outputs[12].

The above algorithm represents a cooperative procedure among the local clusters to estimate mapping
outputs accurately. Note that each interpolation group generates its own output, which separates out possible
multiple outputs existing in many-to-many mappings. Furthermore, the above algorithm can be applied
equally well to both forward and inverse mappings, since x and y can be interpreted respectively either
as input and output or as output and input without losing generality. In short, the MRBF network is capable
of performing bidirectional many-to-many mappings. This mapping process can be considered as a general
form of defuzzification.

Fig. 3 illustrates the locally cooperative interpolation mapping algorithm described above. It shows the
retrieval of three outputs for the given input x 5 - First, three clusters (Clusters 4, 5, and 6) become active for
the given input. Then, each of the three clusters generates its own output by finding the minimum
Mahalanobis distance to the given manifold, x=x . Then, the three estimated outputs from individual clusters
are grouped into two interpolation groups: one group by cluster 6, and the other group by cluster 4 and 5,
based on the measure of their proximity. The three groups yield two unique outputs y; and Y5, where y, is
obtained by fusing the two outputs in the same group.

3. Inference Engine

A mapping may represent situation transition rules. For instance, x and y may represent the current and
next situations, s(k) and s(k+1), respectively, while the current action, u(k), is associated implicitly with
each pair of (s(k),s(k+1)) . In this case, the set of local clusters learned by the MRBF network represents the
feasible situation transitions by available actions, and defines the feasible situation transition manifold
(FSTM) in the (x=s(k),y=s(k+1)) space.

To infer a sequence of actions or situation transitions that transforms the current situation to the goal
situation is one of the key functions in rule-based systems, often carried out by a, so called, inference engine.
The mapping represented by MRBF is in a continuous domain, such that the search for a sequence of
transitions from the initial situation, s, to the goal situation, s, may become excessive in terms of time
complexity. Here, a new inference engine is constructed especiaily for the MRBF representation of a
mapping, which allows to search for an optimal transition sequence efficiently in a continuous domain. The
proposed engine is based on the dynamic planning of an optimal path in the situation-time space, (s,k) , under

300

250 )
200 Y=y

150
23

100 Y=y,

Figure 3: The retrieval of mapping outputs in the MRBF network based on the proposed locally
cooperative interpolation mapping algorithm. The asterisks and small circles represent respectively the
cluster centers and outputs of active clusters. The solid straight lines represent the minimum
Mahalanobis distances.
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Figure 4: An illustration of the dynamic path planning algorithm. (a) An initial particle assignment
along 6 time steps. (b) Each particle moves toward an equilibrium. (c) The feasible situation transition
regions defined by forward and inverse mappings. The hollow stars denote the feasible transition
regions from forward mappings, while the shadow stars denote the feasible transition regions from
inverse mappings.

the constraint imposed by FSTM. To be more specific, the concept of Dynamic Path Planning (DPP) is
introduced first in the following:

Let us assume, as the initial step, that an arbitrary sequence of m transitions, such as a straight line path
from the initial to the goal situations, is set in the situation-time space, as illustrated in Fig. 4.(a). In this case,
neither the constraint imposed by FSTM nor the minimum cost requirement is taken into consideration.
Therefore, the initial transition sequence thus set may be neither feasible nor optimal.

Consider now that there exist charged particles distributed along the path, one at each time step, as
shown by the black dots in Fig. 6(a). Each particle is allowed to move only on the situation space defined at
its designated time. To satisfy the constraint imposed by FSTM, the particle at the k th step (or, briefly, the
particle k) must reside in the intersection of two regions, one reachable from the particle k~1 and the other
reachabile to the particle k+1 by situation transitions, as illustrated in Fig. 6(c). The region reachable from the
particle k-1, referred to here as the forward region at k, can be defined from the forward mapping of the
MRBF network at s(k—1) , whereas the ~~gion reachable to the particle k+1 , referred to here as the backward
region at k, can be defined from the inverse mapping of the MRBF network at s(k+1) . In summary, each
particle along the path must reside in the intersection of the two regions associated with it, the forward and
backward regions, defined respectively by the previous and next steps of particles, except those fixed particles
at the initial and goal steps.

{n the proposed dynamic path planning, the two forward and backward regions associated with a particle

play a role as attractors, such that the particle gradually converges to the intersection of the two. It should be
noted that the two regions are subject to a constant change along with the continuous update of the locations
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of individual particles. So named dynamic path planning to represent path planning in an environment with
open channels varying dynamically in time.

To move a particle toward the regions of attraction, each region generates an attraction force based on
the potential field assigned to each region. A potential field has a zero slope inside the region, while having
a sharp slope outside, as shown in Fig. 5(d). As time progresses, particles move toward the intersection of
their own forward and backward regions, as seen by Fig. 4, in spite of the continuous variation of the regions
of attraction along with the motion of particles. The movement of particles will be stopped when they all
reside in the intersection of two attraction regions, representing feasible transitions.

In the case where not only a feasible but also an optimal transition sequence is searched for, the potential
fields generated for the feasibility conditions, i.e., the forward and backward regions associated with
individual particles, should be combined with the potential field generated for the given optimality conditions
such as the minimum in path length. Note that there is no force generated from the feasibility conditions once
a particle is reached inside the intersection of forward and backward regions, such that only the force
generated for the optimality condition is applied to a particle to drive it to an optimal location.

During the process of dynamic path planning, all the particles along the path, except the initial and goal
particles, move simultaneously by the forces generated by the potential fields. The potential fields themselves
are subject to continuous variation until particles reach the intersection of their forward and backward
regions. To make the dynamic path planning more efficient, the following heuristics is incorporated: 1) the
nearer a particle is to the initial one in sequence, the greater it is influenced by the attraction force from its
forward region, and 2) the nearer a particle is to the goal one in sequence, the greater it is influenced by the
attraction force from its backward region. This heuristics is implemented by assigning a diminishing weight
sequence from the initial to the goal to the forces generated by forward regions, while assigning a diminishing
weight sequence from the goal to the initial to the forces generated by backward regions, as illustrated in Fig.
4(c).

Since it may not be known initially how many time steps are required for the search, the number of steps
are increased one by one, starting from one, as required by the search.

3.1 Dynamic Path Planning Algorithm

The potential field, P(k), from the feasibility condition represented by the forward region at k can be
formulated as follows: 1) Based on the learned MRBF network, obtain the range of s(k) for the given s(k-1)
by forward mapping.  The range of s(k), representing the forward region of s(k), is defined in terms of
discrete points as a grid,  as shown in Fig. 5(a). 2) At each discrete point of the forward region, define a
Gaussian  kernel of fixed variance and height. Make sum of all the = Gaussian kernels generated for the
grid, as shown in Fig. 5(b). 3) Flatten the Gaussian sum by cutting the top with the threshold, 8, , where 6,

() ()
m i
;
0 6

Figure 5: A potential field: (a) the feasible transition region, (b) the sum of the gaussian kernels, (c)
flattening with the threshold value, 8, and (d) final potential field.
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represents the  minimum value of the Gaussian sum at grid points, as shown in Fig. 5(c). 4) The flattened
Gaussian sum represents the potential field from the forward region, as shown in Fig. 5(d). The potential
field, Py (k) , due to the backward region at k can be formulated by the same way as above, except that the
backward region of s(k) is defined from the inverse mapping with the given s(k+1) . Now, the total potential
field, P{k), at k due to the feasibility condition can be defined as the weighted sum of Pﬁ(k) and be(k) , as
follows: '

P(ky=w g K)P o Ky+w g (KYP (k)

where w{k) and wg (k) are monotonically decreasing and increasing functions of &, respectively. Then,
the force that drives the particle k to the intersection of forward and backward regions can be defined as the
gradient of Pf(k) in the situation space.

On the other hand, the optimality condition such as the minimum path length can be incorporated into
the search by formulating a potential field, P ,» fepresenting the square sum of the distances between the two
consecutive particles. Note that P is a global measure over k , whereas P (k) is a local measure at k . The
force that drives the particle & to the minimum of P can be defined by the negative gradient of P with
respect to the situation associated with the particle k. This gradient turns out to be a function of only s(k-1)
and s(k+1), the immediate neighbors of the particle k , same as the force from the feasibility conditions. Then
the total force, f(k), that drives the particle & can be obtained by the weighted sum of the two forces, fj(k)
and f (k) , respectively from the feasibility condition and optimality condition:

fiy=wfLi)+w f (k) ,
where we is set to be much larger than w .
The following steps summarize the algorithm:

Step 1. Assign 2 to the required number of steps, n. If an estimate of the minimum required number of
steps is available, then assign the estimate ton. Set s; and s, to be the initial and goal situations, respectively.

Step 2. Assign an arbitrary initial path. However, it is preferred that the initial path is set to be the one
that maximize the given performance criteria, e.g., a straight line in the case of the minimum length criterion,
but without taking the feasibility condition into consideration. Set Loop=1 .

Step 3. For each k, 1<k<n, calculate the forces at k due to the feasibility condition, fj(k) and due to the
optimality condition, f,_(k) , based on the methods described above.

Step 4. For each k, l<k<n, move the particle k toward the direction specified by the total force, f(k)
by a small amount proportional to the strength of the total force.

Step 5. Check whether or not an equilibrium is reached, where an equilibrium is said to be reached when
the amount of total force at each k is less than the predefined threshold. If an equilibrium is reached, then
check whether or not the generated path is acceptable. If yes, stop.

Step 6. If Loop is less than the predefined maximum loop count, then set Loop=Loop+1 and go to Step
Step 7. Set n=n+1 and Loop=1. Set up a new particle at a new step inserted between the arbitrary chosen
time steps failed in feasible transition with a random assignment of a situation. Go to Step 3.

Note that the computation of driving forces at each k can be done simultaneously in parailel. Fig. 6
illustrates an implementation of the proposed dynamic path planning algorithm based on massive parallel
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Figure 6: The neural network architecture for computing the dynamic path planning
algorithm. For clarity, a state s, , 1<k<n , is denoted by more than one node.

15 0 5 015

s(k) s(k)
Figure 7: Examples of feasible situation transition manifolds (FSTM) representing two
hypothetical dynamic systems.

computation of driving forces with a neural network.

The validity of the proposed dynamic path planning algorithm is verified based on the hypothetically
generated FSTM shown in Fig. 7. The hyper-ellipsoidal clusters of various sizes and shapes, learned by the
MRBF network to represent FSTM, are shown in Fig. 8. Then, a feasible transition sequence from the initial
and goal situation is searched for by applying the dynamic path planning algorithm to the learned MRBF
network. The results are shown in Fig. 9, where optimal paths with 5 situation transitions are found for both
cases, starting with the initially assigned 2 transitions. Note that the search for an optimal path especially for

the case shown in Fig. 9(a) is rather difficult due to the fact that the optimal transitions occur at the corner of
FSTM.

—134-



....................................

S 10

Ts
s(k)
Figure 8: The result of multi-resolution clustering based on the data of Fig. 7.
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Figure 9: The optimal path found for the dynamic systems shown in Fig. 7.(a) 5,=0 and
s5,=14 .(b) 5,=0 and s5,=9 Notice that the lines in (b) and (d) are drawn only to show the
approximate boundaries of the FSTM in Fig. 7.

Finally, the dynamic path planning algorithm may be subject to local minima. However, the algorithm
may be less vulnerable to the local minima problem, since, at a local minimum, the algorithm recruits a new
step to be inserted into a path such that an ill condition caused the local minimum can be broken. Furthermore,
the dynamic change of potential fields during the search process helps to break up the local minima at
individual particles.

4. Case Study

4.1 Skill for Non-Holonomic Motion Planning

Controlling a dynamic system involving nonholonomic constraints, such as a car-like robot, draws much
attention from many researchers {4,6,7]. Here, we apply the proposed MRBF network to the acquisition of a
motion planning skill by a car-like robot navigating in a cluttered environment.

A car-like robot, 4, navigating in the 2d workspace with four wheels is shown in Fig. 10. 4 has three
state variables, (x,y,08) , where x and y are the position of the midpoint between the two rear wheels, and 6
denotes the angle of the robot around the z-axis, and two control variables, (v,) , where v denotes the speed
of the car, and ¢ is the turning angle of the steering wheel. 4 is subject to non-holonomic constraints:

C1:-xcos(8)+ycos(8)=0
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X X
Figure 10: The classic example of car-like robot 4 in the nonholonomic motion planning. R is the
midpoint between two rear wheels. C is the rotation center of 4.
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2 2
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6 }O, where p, . is the minimum of the turning radius, p , of the car. (Refer to Fig. 10.)
C1 and C2 are non-integrable and referred to non-holonomic equality constraint and nonholonomic

inequality constraints respectively [2].

Data Collection

An input-output space is formed by the Cartesian product of the current situation space, (x(k),y(k),8(k)),
the current action space, (v(k),p(k)), and the next situation space, (x(k+1),y(k+1),8(k+1)). The data
representing FSTM can be constructed may be collected either from the kinematic and dynamic model of the
car-like robot, or from the actual experimentation.

There are two ways of representing the FSTM for the above example. First, we define the feasible
transitions of situations to be dependent not only on the available control actions but also on the environment
such as obstacles. This implies that the transition is situation-dependent. For instance, the next robot pose that
can be reached from the current robot pose depends on the obstacles near the current robot pose, in addition
to the available current action. As shown in Fig. 11, to construct an FSTM, we need data collected from a large
number of robot poses distributed over the workspace. Second, we define the feasible transitions of situations
to be dependent only on the available control actions but independent of the environment. For instance, we
can define the FSTM of a car-like robot at its particular pose, as shown in Fig. 12 (a) and (b). Then, the
feasible transitions of the robot at the current pose can be identified from the FSTM by applying the kinematic
transformation (i.e., rotation and translation) between the reference and the current pose. and by taking into
account the obstacles near the current robot pose, as shown in Fig. 12,

In this paper, the data are generated from the kinematic model of a car-like robot. This is done by
selecting a robot pose and control action randomly at time k and compiting its pose at time k + dt based on
the kinematic model, while checking whether or not the result satisfies the nonholonomic constraints as well

1 1
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Figure 11: Ten examples of feasible situation transitions randomly generated from the
kinematic model. The rectangles denote obstacles in the workspace.
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Figure 12: (a) The reference pose where the FSTM is defined without taking the environment into
consideration. (b) The projection of the FSTM defined in the augmented situation onto the situation
space.
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Figure 13: Two example results for the car-like robot motion planning.

05 0.9
X_position X_position

Figure 14: (a) Initial and goal configurations are given. (b) A sequence of configuration transitions are
generated connecting the initial and gaol configurations.

as the obstacle avoidance conditions.
Experimental Result

Fig. 13 illustrates two examples of the feasible paths generated based on the FSTM and the dynamic path
planning algorithm. Fig. 14 illustrates the classic parallel parking skill discovered by the robot. Note that
Fig. 13 and Fig. 14 show the snap shots of the transitions from the given initial and goal configurations.
However, the dashed lines drawn between configurations are used to illustrate the connection of the snap
shots, but not the actual path taken. There are total of five states depicted in the trajectory in the parallel
parking example, including the initial and goal states. The backward motion to the goal configuration from
its previous state is shown.
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Note that the dynamic path planning algorithm functions as a bidirectional A* search algorithm, but with
the feasibility of massive parallel computation. Furthermore, for the search-based approaches with the
discretization of configuration space and control parameters, the search space becomes potentially very large
due to the small size of discretization required for precision. For the proposed approach, although the input
data are represented in a discrete form, the locally cooperative algorithm is able to reconstruct feasible
transitions in a continuous domain. This capability allows the proposed approach to represent a skill in a
continuous domain.

4.2 Skill for Telemanipulation

To further verify the validity of the proposed approach, we have obtained experimental data of
teleoperation at the Advanced Teleoperation Laboratory of Jet Propulsion Laboratory (JPL). The data
collected at JPL are based on actual human subjects engaged in the training of tool retrieval and storage
processes for space teleoperation, where the traces of data provide the gradual improvements of human skills
through training. There are total of 60 traces collected from 6 persons. Each person contributes about 10
traces. The actual position data collected after normalization are shown in Fig. 15. The augmented situation
space is a six dimensional space where (xp¥po24) Tepresents the current situation space and e 1Y ke 1244 1)
represents the next situation space. The path is generated based on forward mapping from (x(k),y(k),z(k))
to (x(k+1),y(k+1),z(k+1)), and inverse mapping from (x(k+1),y(k+1),2(k+1)) to (x(k),y(k),z(k)). Fig. 16
shows the final trajectory obtained. The final trajectory contains 38 situations, while the best trajectory from
the input data contains 77 situations. The results obtained by our approach may not necessarily the same as
the results from HMM model [11].

5. Conclusion

This paper presented a novel MRBF network and established a firm connection between the MRBF
network and fuzzy rule based systems. More precisely, 1) A method of self-organizing a set of hyper-
ellipsoidal local clusters of various size and shape is established as a means of self-organizing fuzzy rules.
2) A method of performing accurate many-to-many mapping based on  cooperative interpolation of local
clusters is presented  as a means of defuzzification. 3) A method of searching for an optimal transition
sequences  based on dynamic path planning as a means of implementing  an inference engine. The
presented MRBF network is much more efficient and accurate in mapping representation than the
conventional RBF networks, since the non-uniform size and shape of local clusters are better and easier to fit
for an arbitrary mapping relation. The MRBF network is also more convenient for achieving a balanced trade-

05

y_position 00 x_poshion

Figure 15: The position data collected for the tool retrieval and storage task at JPL. Total of 60
traces are collected.



off between accuracy and generalization.  Neural networks including RBF networks need a sufficient
number of training samples to achieve good learning and generalization, especially when their dimensions go
up higher. It would be interesting to see what further advantages can be resulted if the proposed MRBF
network is combined with expert rules such that the network can achieve a good generalization in spite of a
limited number of available samples.
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