A NOTE ON a-FUZZY CLOSED AND a-FUZZY CONTINUOUS MAPPINGS

J.R. Moon*, Y.S. Ahn** and K. Hur***

0. Introduction.

We introduce new weak forms of fuzzy continuity and fuzzy closed mapping (which we call a-fuzzy continuity and a-fuzzy closed mapping). And we investigate some of the basic properties of a-fuzzy continuous mappings and a-fuzzy closed mappings.

1. Preliminaries.

The symbols X, Y and Z denote fuzzy topological spaces with no separation axioms assumed unless explicitly stated. The closure, interior and complement of a fuzzy set A in a fuzzy topological space X are denoted by Cl(A), Int(A), and $\mathbb{C}A$, respectively.

Definition1.1[2]. A fuzzy set A in a fuzzy space X is said to be **g-fuzzy** closed if $Cl(A) \subset U$ whenever $A \subset U$ and U is fuzzy open in X. A fuzzy set A is said to be g-fuzzy open in X if $\mathbb{C}A$ is g-fuzzy closed in X.

Theorem A[2]. A fuzzy set A is g-fuzzy open if and only if $F \subset Int(A)$ whenever F is fuzzy closed and $F \subset A$.

Definition 1.2[2]. A mapping $f: X \to Y$ is said to be **g-fuzzy continuous** if for each closed fuzzy set F in Y, $f^{-1}(F)$ is g-fuzzy closed in X.

2. a-Fuzzy Closed and a-Fuzzy Continuous Mappings.

Definition 2.1. Let X and Y be fuzzy topological spaces. Then:

(1) A mapping $f: X \to Y$ is said to be approximately fuzzy closed (or simply a-fuzzy closed) if $f(F) \subset Int(A)$ whenever F is a closed fuzzy set in X, A is a g-open fuzzy set in Y, and $f(F) \subset A$.

^{*} Department of Mathematics, Wonkwang University

^{**} Dong Shin Junior College

^{***} Department of Mathematics, Wonkwang University

(2) A mapping $f: X \to Y$ is said to be approximately fuzzy continuous (or simply a-fuzzy continuous) if $Cl(A) \subset f^{-1}(V)$ whenever V is an open fuzzy set in Y, A is a g-closed fuzzy set in X, and $A \subset f^{-1}(V)$.

It is clear that fuzzy closed mappings are a-fuzzy closed, and fuzzy continuous mappings are a-fuzzy continuous. The following Example shows that converse implications do not hold.

Example 2.2. Let $X = \{a, b\}$ and let $\tau = \{0, \{(a, \lambda), (b, 0)\}, \{(a, 0), (b, \mu)\}$, $\{(a, \lambda), (b, \mu)\}, \underline{1}\}$, where $\lambda \neq \mu$ and $0 < \lambda, \mu \leq 1$. Then clearly τ is a fuzzy topology on X. Let $f: X \to X$ be the mapping defined by f(a) = b, and f(b) = a. Then f is neither fuzzy closed nor fuzzy continuous. However, since the image of each closed fuzzy set is fuzzy open, f is a-fuzzy closed. Also since the inverse image of each open fuzzy set is fuzzy closed, f is a-fuzzy continuous.

The proof of the following result is a straightforward argument using complements and is omitted.

Theorem 2.3. Let $f: X \to Y$ be bijective. Then f is a-fuzzy closed if and only if f^{-1} is a-fuzzy continuous.

3. Preserving g-Closed Fuzzy Sets.

Theorem 3.1. If $f: X \to Y$ is g-fuzzy continuous and a-fuzzy closed, then $f^{-1}(A)$ is g-fuzzy closed(or g-fuzzy open) in X whenever A is g-fuzzy closed(or g-fuzzy open) in Y.

Proof. Let A be a g-closed fuzzy set in Y and let U be any open fuzzy set in X such that $f^{-1}(A) \subset U$. Then $\mathbb{C}U \subset \mathbb{C}f^{-1}(A) = f^{-1}(\mathbb{C}A)$ or $f(\mathbb{C}U) \subset f(f^{-1}(\mathbb{C}A)) \subset \mathbb{C}A$. Since f is a-fuzzy closed and $\mathbb{C}U$ is fuzzy closed in X. $f(\mathbb{C}U) \subset Int(\mathbb{C}A) = \mathbb{C}(Cl(A))$. Thus $\mathbb{C}U \subset f^{-1}(\mathbb{C}Cl(A)) = \mathbb{C}f^{-1}(Cl(A))$ and hence $f^{-1}(Cl(A)) \subset U$. Since f is g-fuzzy continuous and Cl(A) is fuzzy closed in Y, $f^{-1}(Cl(A))$ is g-fuzzy closed in X. Thus $Cl(f^{-1}(A)) \subset Cl(f^{-1}(Cl(A))) \subset U$. Hence $f^{-1}(A)$ is g-fuzzy closed in X.

A similar argument shows that inverse image of g-open fuzzy sets are g-fuzzy open.

Theorem 3.2. If $f: X \to Y$ is a-fuzzy continuous and fuzzy closed, then f(A) is g-fuzzy closed in Y whenever A is g-fuzzy closed in X.

Proof. Let A be any g-closed fuzzy set in X and let V be any open fuzzy set in Y such that $f(A) \subset U$. Then $A \subset f^{-1}(V)$. Since f is g-fuzzy continuous and A is g-fuzzy closed in X, $Cl(A) \subset f^{-1}(V)$. Thus $f(Cl(A)) \subset V$. Since f

s fuzzy closed, f(Cl(A)) is fuzzy closed in Y. So $Cl(f(A)) \subset Cl(f(Cl(A))) = f(Cl(A)) \subset V$, and hence $Cl(f(A)) \subset V$. Therefore f(A) is g-fuzzy closed.

4. Some Properties of a-Fuzzy Closed and a-Fuzzy Continuous Mapping.

In this section we characterize $T_{\frac{1}{2}}$ -spaces using a-fuzzy closed and a-fuzzy continuous mappings. Also we obtain sufficient conditions for a mapping to a-fuzzy closed or a-fuzzy continuous. Finally we investigate some of the properties of these mappings involving composition.

Definition 4.1. A fuzzy topological space X is called a $T_{\frac{1}{2}}$ -space if each g-closed fuzzy set in X is fuzzy closed.

Theorem 4.2. Let X be a fuzzy topological space. Then X is a $T_{\frac{1}{2}}$ -space if and only if for each fuzzy topological space Y and each mapping $f: X \to Y$, f is a-fuzzy continuous.

Proof. (\Rightarrow): Suppose X is a $T_{\frac{1}{2}}$ -space, let V be any open fuzzy set in Y, and let A be a g-closed fuzzy set in X such that $A \subset f^{-1}(V)$. Then by hypothesis, A = Cl(A). Thus $Cl(A) \subset f^{-1}(V)$. Hence f is a-fuzzy continuous.

(\Leftarrow): Suppose the necessary condition holds. Let A be a (non-empty) g-closed fuzzy set in X and let Y be the set X with the fuzzy topology $\mathcal{U} = \{\underline{0},\underline{1},A\}$. Let $f:X\to Y$ be the identity mapping. Then clearly f is a-fuzzy continuous. Since A is g-fuzzy closed in X and fuzzy open in Y, and $A\subset f^{-1}(A)$, $Cl_X(A)\subset f^{-1}(A)=A$. So A is fuzzy closed in X. Therefore X is $T_{\frac{1}{2}}$. ■

The following result can be proved by the similar argument in Theorem 4.2

Theorem 4.3. A fuzzy topological space X is $T_{\frac{1}{2}}$ if and only if for each fuzzy topological space Y and each mapping $f: X \to Y$, f is a-fuzzy closed.

From Definition 2.1, we can easily show the following two results:

Theorem 4.4. Let $f: X \to Y$ be a mapping for which f(F) is fuzzy open in Y for each closed fuzzy set F in X. Then f is a-fuzzy closed.

Theorem 4.5. Let $f: X \to Y$ be a mapping for which $f^{-1}(V)$ is fuzzy closed in X for each open fuzzy set V in Y. Then f is a-fuzzy continuous.

Since the identity mapping on any fuzzy topological space is both a-fuzzy continuous and a-fuzzy closed, it is clear that the converse of Theorem 4.4 and 4.5 do not hold.

Compositions of a-fuzzy continuous (or a-fuzzy closed) mappings are not in general a-fuzzy continuous (or a-fuzzy closed). However the following results hold:

Theorem 4.6. If $f: X \to Y$ is fuzzy closed and $g: Y \to Z$ is a-fuzzy closed, then $g \circ f: X \to Z$ is a-fuzzy closed.

Proof. Let F be any closed fuzzy set in X and let A be a g-open fuzzy set in Z such that $g \circ f(F) \subset A$. Since f is fuzzy closed, f(F) is fuzzy closed in Y. Since g is g-fuzzy closed, $g(f(F)) \subset Int(A)$. Hence $g \circ f$ is g-fuzzy closed.

Theorem 4.7. If $f: X \to Y$ is a-fuzzy closed and $g: Y \to Z$ is fuzzy open and inversely preserves g-open fuzzy sets, then $g \circ f: X \to Z$ is a-fuzzy closed.

Proof. Let F be a closed fuzzy set in X and let A be a g-open fuzzy set in Z such that $g \circ f(F) \subset A$. Then $f(F) \subset g^{-1}(A)$. Since $g^{-1}(A)$ is g-fuzzy open in Y and f is g-fuzzy closed, $f(F) \subset Int(g^{-1}(A))$. Then $g \circ f(F) = g(f(F)) \subset g(Int(g^{-1}(A))) \subset Int(g(g^{-1}(A))) \subset Int(A)$. Hence $g \circ f$ is g-fuzzy closed.

Theorem 4.8. If $f: X \to Y$ is a-fuzzy continuous and $g: Y \to Z$ is fuzzy continuous, then $g \circ f: X \to Z$ is a-fuzzy continuous.

Proof. Let A be any g-closed fuzzy set in X and let V be an open fuzzy set in Z such that $A \subset (g \circ f)^{-1}(V)$. Since g is fuzzy continuous, $g^{-1}(V)$ is fuzzy open in Y. Since f is a-fuzzy continuous, $Cl(A) \subset f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$. Hence $g \circ f$ is a-fuzzy continuous.

Corollary 4.9. Let $f_{\alpha}: X \to Y_{\alpha}$ be a mapping for each $\alpha \in J$ and let $f: X \to \prod_{\alpha \in J} Y_{\alpha}$ be the product mapping given by $f(x) = (f_{\alpha}(x))$. If f is a-fuzzy continuous, then f_{α} is a-fuzzy continuous for each $\alpha \in J$.

References.

- [1] C.W.Baker, On preserving g-closed sets, preprint.
- [2] K.Hur, A Note on g-closed fuzzy sets and g-fuzzy continuities.