퍼지 정취 수렴구조

FUZZY REGULAR CONVERGENCE STRUCTURES

BU YOUNG LEE AND SU HO SOHN

ABSTRACT

We define a fuzzy regular modification and fuzzy regular series. And we investigate some properties of fuzzy regular modification with respect to fuzzy initial convergence structure

1. Introduction and preliminaries

We introduced in [7] the concept of fuzzy convergence structure using prefilter which was an extension of fuzzy topology, and c-neighborhood prefilter as a generalization of a q-neighborhood system in fuzzy topological space. And in [8] and [9], we defined the fuzzy initial convergence and separation axioms, investigated their some properties.

Our main purpose in this paper is to define fuzzy R-Hausdorff convergence structure, fuzzy regular modification and fuzzy regular series, and to investigate their some properties.

For a nonempty set X and unit interval I=[0,1], a fuzzy set in X is an element of the set of all functions from X to I. The support of a fuzzy set A in X, $\operatorname{Supp}(A)$, is the crisp set of all $x \in X$ such that A(x) > 0. A fuzzy point p in X is a fuzzy set in X defined by $p(x_p) = \lambda_p (0 < \lambda_p \leq 1)$ and p(x) = 0 for $x \neq x_p$, in this case, support of p is $\{x_p\}$, briefly x_p , and λ_p is called value of p. Fuzzy point p is called fuzzy element of fuzzy set A, $p \in A$ as notation, if $\lambda_p \leq A(x_p)$. And p is said to be quasi-coincident with A, denoted by p(A), if $x_p + A(x_p) > 1$. $x_p + A(x_p$

Let $\mathcal{F}, \mathcal{G} \in F(X)$, \mathcal{F} is said to be finer than \mathcal{G} if $\mathcal{G} \leq \mathcal{F}$. Any two prefilter \mathcal{F} and \mathcal{G} are said to be disjoint if there exist $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that $F \cap G = 0_X$. $\mathcal{F} \in F(X)$ is called ultra prefilter if there is no other prefilter finer than \mathcal{F} (i.e., it is maximal for the inclusion relation among prefilters) ([3]).

Let f be a function from X to Y, A be a fuzzy set in X and B be a fuzzy set in Y. Then f(A) is a fuzzy set in Y with membership function

$$f(A)(y) = \begin{cases} \sup \{A(x) | x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \phi \\ 0, & \text{if } f^{-1}(y) = \phi \end{cases}$$

for any $y \in Y$, and $f^{-1}(B)$ is a fuzzy set in X whose membership function is defined by $f^{-1}(B)(x) = B(f(x))$ for any $x \in X$.

Lemma 1.1 ([3]). If $f: X \to Y$ is a function and \mathcal{F} is an ultra prefilter on X, then $f(\mathcal{F})$ is also an ultra prefilter on Y.

Let $X = \prod_{i \in \Lambda} A_i$ be the cartesian product of X_i 's and for each $i \in \Lambda$ A_i be a fuzzy set in X_i . Then $\prod_{i \in \Lambda} A_i$ is a fuzzy set in X is defined by

$$\prod_{i \in \Lambda} A_i(x) = \inf \{ A_i(x_i) | i \in \Lambda \}$$

for any $x = (x_i)_{i \in \Lambda} \in X$.

A fuzzy convergence structure on X is a function c from F(X) into P(X) satisfying the following conditions:

- (1) For each fuzzy point p in X, $p \in c(p)$.
- (2) For \mathcal{F} , $\mathcal{G} \in F(X)$, if $\mathcal{F} \leq \mathcal{G}$, then $c(\mathcal{F}) \leq c(\mathcal{G})$.
- (3) If $p \in c(\mathcal{F})$, then $p \in c(\mathcal{F} \cap \dot{p})$.

The pair (X,c) is called fuzzy convergence space. If $p \in c(\mathcal{F})$, we say that \mathcal{F} c-converges to p. The prefilter $\mathcal{V}_c(p)$ obtained by intersecting all prefilters which c-converge to p is called the c-neighborhood prefilter at p. If $\mathcal{V}_c(p)$ c-converges to p for each fuzzy point p in X, then c is called fuzzy pretopological structure, and (X,c) fuzzy pretopological space ([7]).

Theorem 1.2 ([7]). Let C(X) be the set of all fuzzy convergence structures on X and \leq a relation on C(X) defined by for each $c_1, c_2 \in C(X)$,

$$c_1 \leq c_2$$
 if and only if $c_2(\mathcal{F}) \leq c_1(\mathcal{F})$ for any $\mathcal{F} \in F(X)$.

Then \leq is a partially order on C(X).

If $c_1 \leq c_2$, we say that c_2 is finer than c_1 and c_1 is coarser than c_2 .

The partially ordered set C(X) is complete lattice whose greatest and least elements are the crip discrete and indiscrete topologies respectively. Thus the following theorem is obtained.

Theorem 1.3. For any $S \subset C(X)$, sup S and inf S are given by the following statements.

$$(\sup S)(\mathcal{F}) = \inf \{c(\mathcal{F}) | c \in S\}, \quad (\inf S)(\mathcal{F}) = \sup \{c(\mathcal{F}) | c \in S\}.$$

Let (X,c) be a fuzzy convergence space and Γ_c be fuzzy closure operator in X, defined by

$$\Gamma_c(A) = \{ p \mid p \in c(\mathcal{F}) \text{ for some prefilter } \mathcal{F} \text{ on } X \text{ with } A \in \mathcal{F} \}$$

for each $A \in P(X)$. Γ_c has all properties of fuzzy topological closure operator except idempotency. A fuzzy set A in X is said to be dense if $\Gamma_c(A) = 1_X$.

Theorem 1.4 ([7]). Let c_1 , c_2 be fuzzy convergence structures on X and A be a fuzzy set in X. If $c_1 \leq c_2$, then $\Gamma_{c_2}(A) \leq \Gamma_{c_1}(A)$.

Let $\Gamma_c^0(A) = A$. If α is an ordinal number and $\alpha - 1$ exists, then $\Gamma_c^{\alpha}(A)$ is defined by $\Gamma_c(\Gamma_c^{\alpha-1}(a))$, IF α is a limit ordinal, then $\Gamma_c^{\alpha}(A)$ is defined by the sup $\{\Gamma_c^{\beta}(A)|\beta < \alpha\}$.

Let f be a function from a fuzzy convergence space (X, c_X) onto a fuzzy convergence space (Y, c_Y) . f is said to be fuzzy continuous at a fuzzy point p in X if the prefilter $f(\mathcal{F})$ c_Y -converges to f(p) for every prefilter \mathcal{F} c_X -converging to p. If f is fuzzy continuous at any fuzzy point p in X, then f is said to be fuzzy continuous.

Theorem 1.5 ([7]). If f is fuzzy continuous and A is a fuzzy set in X, then $f(\Gamma_{e_X}(A)) \leq \Gamma_{e_Y}(f(A))$.

Theorem 1.6. If f is fuzzy continuous and A is a fuzzy set in X, then $f(\Gamma_{c_X}^n(A)) \leq \Gamma_{c_Y}^n(f(A))$ for each natural number n.

Let X be a set, (X_i, c_i) be a fuzzy convergence space for each $i \in \Lambda$, $f_i : X \to (X_i, c_i)$ be a surjection. c is a map from F(X) to P(X) satisfying the following condition:

for any fuzzy point p in X and $\mathcal{F} \in F(X)$, $p \in c(\mathcal{F})$ if and only if $f_i(\mathcal{F})$ c_i -converges to $f_i(p)$ for each $i \in \Lambda$.

Then by [8], c is a fuzzy convergence structure on X that is called the fuzzy initial convergence structure induced by the family $\{f_i|i\in\Lambda\}$

Hereafter (X,c) $((\prod_{i\in\Lambda}X_i,c')=\prod_{i\in\Lambda}(X_i,c_i))$ means fuzzy initial convergence space induced by $\{f_i\mid f_i:X\longrightarrow (X_i,c_i); \text{ onto, } i\in\Lambda\}$ (resp. $\{(P_i\mid P_i:\prod_{i\in\Lambda}X_i\to (X_i,c_i); \text{ projection, } i\in\Lambda\}$). And c' is called fuzzy product convergence structure of $\{(X_i,c_i)\mid i\in\Lambda\}$.

Theorem 1.7 ([8]). Let c_i, d_i be fuzzy convergence structures in X_i for each $i \in \Lambda$. If $c_i \preceq d_i$ for each $i \in \Lambda$, then $c \preceq d$, where d is fuzzy initial convergence structure in X induced by $\{f_i | f_i X \to (X_i, d_i), i \in \Lambda\}$.

A fuzzy convergence space (W, e) is called fuzzy Hausdorff, if prefilter \mathcal{F} e-converges to t and w, then $x_t = x_w$.

Theorem 1.8 ([9]). (1) Let (X_i, c_i) be a fuzzy convergence space for each $i \in \Lambda$. If there exists at least one $j \in \Lambda$ such that f_j is injection and X_j is fuzzy Hausdorff, then (X, c) is fuzzy Hausdorff convergence space.

(2) (X_i, c_i) is fuzzy Hausdorff convergence space for each $i \in \Lambda$ if and only if $(\prod_{i \in \Lambda} X_i, c')$ is also fuzzy Hausdorff convergence space.

Let e, o be two fuzzy convergence structures on a set W. (W,e) is said to be fuzzy o-regular if $\Gamma_o(\mathcal{F})$ e-converges to w whenever \mathcal{F} e-converges to w, and fuzzy o-regular Hausdorff convergence space is called fuzzy o- T_3 convergence space

Fuzzy convergence space (W,e) is said to be fuzzy regular if $\Gamma_e(\mathcal{F})$ e-converges to w whenever \mathcal{F} e-converges w, and fuzzy regular Hausdorff convergence space is said to be fuzzy T_3 convergence space.

Theorem 1.9 ([9]). Let c_i, e_i be fuzzy convergence structures on X_i for each $i \in \Lambda$. If (X_i, c_i) is fuzzy e_i -regular convergence space for each $i \in \Lambda$, then the following statements are hold:

- (1) (X,c) is fuzzy e-regular, where e is the fuzzy initial convergence structure induced by the family $\{f_i \mid f_i : X \longrightarrow (X_i, e_i), i \in \Lambda\}$.
- (2) $(\prod_{i \in \Lambda} X_i, c')$ is fuzzy e'-regular convergence space, where e' is fuzzy product convergence structure of e_i on $\prod_{i \in \Lambda} X_i$.

Furthermore, If (X_i, c_i) is fuzzy regular convergence space for each $i \in \Lambda$, then

- (3) (X, c) is also fuzzy regular convergence space.
- (4) $(\prod_{i \in \Lambda} X_i, c')$ is fuzzy regular convergence space.

2. FUZZY REGULARITIES

Theorem 2.1. Let c_i be a fuzzy e_i -regular convergence structure on X for each $i \in \Lambda$. Then $c = \sup\{c_i | i \in \Lambda\}$ is a fuzzy e-regular convergence structure on X, where $e = \sup\{e_i | i \in \Lambda\}$.

By Theorem 2.1, the supremum r(c) of all fuzzy regular convergence structures coarser than c on X is the finest fuzzy regular convergence structure on X coarser than c, is called the fuzzy regular modification of c. The idea of our notions is essentially due to the work of G.D. Richardson and D.C. Kent in [10].

A fuzzy convergence space (W, e) is said to be fuzzy R-Hausdorff if (W, r(e)) is fuzzy Hausdorff.

Theorem 2.2. Let c^* be the fuzzy initial convergence structure on X induced by the family $\{f_i \mid f_i : X \longrightarrow (X_i, r(c_i)), i \in \Lambda\}$. Then $r(c) \succeq c^*$.

Let c* be fuzzy convergence structure defined in Theorem 2.2. Then by Theorem 1.8 and 2.2, the following corollaries are easily verified.

Corollary 2.3. $(\prod_{i \in \Lambda} X_i, r(c')) \succeq \prod_{i \in \Lambda} (X_i, r(c_i))$.

Corollary 2.4. Let (X_i, c_i) be fuzzy R-Hausdorff convergence space for each $i \in \Lambda$. Then

- (1) If there exists at least one $j \in \Lambda$ such that f_j is injection, then (X, c^*) is fuzzy Hausdorff convergence space.
 - (2) (X, c) is fuzzy R-Hausdorff convergence space.

Corollary 2.5. Let $X = \prod_{i \in \Lambda} X_i$. Then the following statements are equivalent.

- (1) (X_i, c_i) is fuzzy R-Hausdorff convergence space for each $i \in \Lambda$.
- (2) (X, c*) is fuzzy Hausdorff convergence space.

Furthermore, if (X_i, c_i) is fuzzy R-Hausdorff convergence space for each $i \in \Lambda$, then (X, r(c')) is fuzzy Hausdorff.

Let (W, e) be a fuzzy convergence space. The set of all natural numbers (including 0) will be defined by N.

The family $\{W, r_{\alpha}(e)\}$ will be called the fuzzy R-series (or fuzzy regularity series) of (W, e).

Theorem 2.6. If (X, c_{α}^*) is the fuzzy initial convergence space induced by the family $\{f_i \mid f_i : X \longrightarrow (X_i, r_{\alpha}(c_i)), i \in \Lambda\}$ for any ordinal number α . Then $r_{\alpha}(c) \succeq c_{\alpha}^*$.

Thus, the following corollary is easily obtained.

Corollary 2.7. If $(\prod_{i \in \Lambda} X_i, c')$ is the fuzzy product convergence space of family $\{(X_i, c_i) \mid i \in \Lambda\}$. Then, for any ordinal number α ,

$$\left(\prod_{i\in\Lambda}X_i,r_{\alpha}(c')\right)\succeq\prod_{i\in\Lambda}(X_i,r_{\alpha}(c_i)).$$

REFERENCES

- [1] H. J. Biesterfeldt, Regular convergence space, Indag. Math. 28 (1966), 605-607.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] M. A. de Prada and M. Saralegui, Fuzzy filters, J. Math. Anal. Appl. 129 (1988), 560-568.
- [4] D. C. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), 125-133.
- [5] D. C. Kent, G. D. Richardson, Minimal convergence spaces, Trans. Amer. Math. Soc. 160 (1971), 487-499.
- [6] D. C. Kent, G. D. Richardson, The regularity series of a convergence space II, Bull. Austral. Math. Soc. 15 (1976), 223-243.
- [7] B. Y. Lee, J. H. Park and B. H. Park, Fuzzy convergence structures, Fuzzy Sets and Systems 56 (1993), 309-315.
- [8] B. Y. Lee and J. H. Park, Fuzzy initial convergence structures, Fuzzy Sets and Systems, 64 (1994), 241-244.
- [9] B. Y. Lee, S. H. Sohn and J. H. Park, Separation axioms in fuzzy initial convergence structures, Fuzzy Sets and Systems, to appear.
- [10] G. D. Richardson and D. C. Kent, The regularity series of a convergence spaces, Bull. Austral. Math. Soc. 13 (1975), 21-44.
- [11] H. -J. Zimmermann, Fuzzy set theory and its applications, 2nd rev. ed., Kluwer, Boston, 1991.

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, PUSAN 604-714, KOREA