P_L -LIMIT STRUCTURES

Yoonjin Lee and Kyung Chan Min Department of Mathematics Yonsei University Seoul, Korea 120-749

ABSTRACT

We define a P_L -limit structure and a P_L -Cauchy structure and obtain a completion of a separated P_L -Cauchy structure.

1. Intriduction

In 1992, P. Eklund and W. Gähler([3]) introduced the notions of generalized limit and Cauchy structure. Each of these structures is related to a certain covariant functor $\Phi = (\phi, \leq)$ from the category **Set** of sets to the category **SLat** of meet-semilattices satisfying some conditions on products.

Let $\Phi : \mathbf{Set} \to \mathbf{SLat}$ be a covariant functor and $\phi : \mathbf{Set} \to \mathbf{Set}$ the underlying set functor of Φ .

Let X and Y be sets. For $\mathcal{M} \in \phi X$ and $\mathcal{N} \in \phi Y$, the Φ -product $\mathcal{M} \times \mathcal{N}$ of \mathcal{M} and \mathcal{N} is the smallest element \mathcal{L} of $\phi(X \times Y)$, for which $\phi \pi_1(\mathcal{L}) = \mathcal{M}$ and $\phi \pi_2(\mathcal{L}) = \mathcal{N}$, provided it exists, where π_1 and π_2 are projections of $X \times Y$.

Consider the following conditions on the functor $\Phi = (\phi, \leq)$.

- (P) For every $\mathcal{M} \in \phi X$ and $\mathcal{N} \in \phi Y$, the Φ -product of \mathcal{M} and \mathcal{N} exists.
- (Pr) If $f: X \to U$ and $g: Y \to V$ are maps, then $\phi(f \times g)(\mathcal{M} \times \mathcal{N}) = \phi f(\mathcal{M}) \times \phi g(\mathcal{N})$ for every $\mathcal{M} \in \phi X$ and $\mathcal{N} \in \phi U$.
- (D) If $\mathcal{M} \in \phi X$ and \mathcal{N}_1 , $\mathcal{N}_2 \in \phi Y$, then $\mathcal{M} \times (\mathcal{N}_1 \wedge \mathcal{N}_2) = (\mathcal{M} \times \mathcal{N}_1) \wedge (\mathcal{M} \times \mathcal{N}_2)$.

We say that ϕ is connected if $\phi 1$ is a singleton, where $1 = \{p\}$ is a singleton set. If ϕ is connected, then a natural transformation $\eta : id \to \phi$ is uniquely defined. In this

section we assume that the functor $\Phi = (\phi, \leq)$ fulfills the conditions (P), (Pr) and (D) and ϕ is connected.

Definition 1.1. Let X be a set. A subset t of $\phi X \times X$ is called a Φ -limit structure if the following conditions are satisfied, where $\mathcal{M} \to x$ means $(\mathcal{M}, x) \in t$.

- (L1) $\eta_X(x) \to x$ for all $x \in X$.
- (L2) $\mathcal{M} \to x$ and $\mathcal{M} \leq \mathcal{N}$ imply $\mathcal{N} \to x$.
- (L3) If $\mathcal{M} \to x$ and $\mathcal{N} \to x$, then $\mathcal{M} \wedge \mathcal{N} \to x$

The pair (X,t) is called a Φ -limit space.

Definition 1.2. A map $f:(X,t)\to (Y,u)$ between Φ -limit spaces is said to be Φ -continuous if $\mathcal{M} \to x$ implies $\phi f(\mathcal{M}) \to f(x)$.

Let Φ -Lim be the category of all Φ -limit spaces and Φ -continuous maps between them.

Definition 1.3. A Φ -Cauchy structure on a set X is a subset s of ϕX satisfying the following conditions.

- (C1) $\eta_X(x) \in s$ for all $x \in X$.
- (C2) $\mathcal{M} \in s$ and $\mathcal{M} \leq \mathcal{N}$ imply $\mathcal{N} \in s$.
- (C3) If \mathcal{M} , $\mathcal{N} \in s$ and $\{\mathcal{M}, \mathcal{N}\}$ has an upper bound in $(\phi X, \leq)$, then $\mathcal{M} \wedge \mathcal{N} \in s$.

The pair (X, s) is called a Φ -Cauchy space.

Definition 1.4. A map $f:(X,s)\to (Y,u)$ between Φ - Cauchy spaces is said to be Φ -Cauchy continuous if $\mathcal{M}\in s$ implies $\phi f(\mathcal{M})\in u$.

Let Φ -Chy be the category of all Φ -Cauchy spaces and Φ -Cauchy continuous maps between them.

Let (X,t) and (Y,u) be Φ -limit spaces and let C(X,Y) denote the set of all Φ -continuous maps from (X,t) to (Y,u).

Proposition 1.5. The subset c of $\phi C(X,Y) \times C(X,Y)$ defined by

$$\mathcal{K} \xrightarrow{c} f$$
 if and only if $\phi ev(\mathcal{M} \times \mathcal{K}) \xrightarrow{u} f(x)$

for each
$$x \in X$$
 and $\mathcal{M} \to x$,

where $ev: X \times C(X,Y) \to Y$ is the evaluation map $(x,f) \longmapsto f(x)$, is a Φ -limit structure on C(X,Y).

Theorem 1.6. Φ -Lim is a cartesian closed topological category.

Let (X, s) and (Y, u) be Φ -Cauchy spaces and let $C_c(X, Y)$ be the set of all Φ -Cauchy continuous maps between them.

Proposition 1.7. The subset d of $\phi C_c(X,Y)$, defined by

 $\mathcal{K} \in d$ if and only if $\phi ev(\mathcal{M} \times \mathcal{K}) \in u$ for each $\mathcal{M} \in s$, is a Φ -Cauchy structure on $C_c(X,Y)$.

Theorem 1.8. Φ-Chy is a cartesian closed topological category.

2. P_L -limit spaces and P_L -Cauchy spaces

Let L be a linear complete Heyting algebra. A subset \mathcal{F} of L^X , the set of all maps from X to L, is called an L-prefilter on X if it satisfies the following:

(LP1) $\underline{\alpha} \in \mathcal{F}$ for all $\alpha > 0$ and $\underline{0_L} \notin \mathcal{F}$, where $\underline{\alpha}$ is the constant map with value α ,

(LP2) if $A \in \mathcal{F}$ and $A \leq B$ then $B \in \mathcal{F}$,

(LP3) for all $A, B \in \mathcal{F}$, we have $A \wedge B \in \mathcal{F}$.

 $A \leq B$ and $A \wedge B$ are defined pointwise.

A subset \mathcal{B} of an L-prefilter \mathcal{F} on X is called a *basis* for \mathcal{F} if for each $A \in \mathcal{F}$ there exists $B \in \mathcal{B}$ such that $B \leq A$. For a given set X a subset \mathcal{B} of L^X is a basis for an L-prefilter on X if it satisfies the following:

(LPB1) $\underline{\alpha} \in \mathcal{B}$ for all $\alpha > 0$ and $\underline{0_L} \notin \mathcal{B}$,

(LPB2) for all $A, B \in \mathcal{B}$, there exists $C \in \mathcal{B}$ such that $C \leq A \wedge B$.

The *L*-prefilter \mathcal{F} generated by \mathcal{B} is defined by $\{A \in L^X : B \leq A \text{ for some } B \in \mathcal{B}\}$ and is denoted by $\langle \mathcal{B} \rangle$. For a map $f: X \to Y$ and a prefilter (base) \mathcal{B} on X, $\{B \in L^Y : f(A) \leq B \text{ for some } A \in \mathcal{B}\}$ is an *L*-prefilter on Y and is denoted by $f(\mathcal{B})$. In particular, if $\mathcal{F} = \langle \mathcal{B} \rangle$, then $f(\mathcal{F}) = f(\mathcal{B})$.

For a set X, let $\phi(X) = P_L(X)$ be the set of all L-prefilters on X. Then $(P_L(X), \subseteq)$ is a meet-semilattice with $\mathcal{F} \cap \mathcal{G} = \{A \vee B : A \in \mathcal{F} \text{ and } B \in \mathcal{G}\}$ for all $\mathcal{F}, \mathcal{G} \in P_L(X)$. So we can define a functor $P_L : \mathbf{Set} \to \mathbf{SLat}$. And since $P_L 1$ is singleton $\{\{\underline{\alpha} : \alpha > 0_L\}\}$, there exists a unique natural transformation $\eta : id \to P_L$ defined by $\eta_X(x) = \{A \in L^X : \mu_A(x) > 0_L\} = \langle x \rangle$.

Let X and Y be sets. For $\mathcal{F} \in P_L(X)$ and $\mathcal{G} \in P_L(Y)$, $\langle \{A \circ \pi_1 \land A \circ \pi_2 : A \in \mathcal{F}, B \in \mathcal{G} \} \rangle$ is the smallest element in $P_L(X \times Y)$ of which first and second projections are \mathcal{F} and \mathcal{G} , respectively.

Proposition 2.1. (P_L, \subseteq) fulfills (P), (Pr) and (D).

So we can define a P_L -limit structure and a P_L -Cauchy structure replacing Φ with P_L in 1.1 and 1.3, respectively.

A P_L -limit structure t is a subset of $\mathcal{F}_L(X) \times X$, subject to the following axioms: where $\mathcal{F} \to x$ means $(\mathcal{F}, x) \in t$,

$$(P_L L1) \langle x \rangle = \{A \in L^X : \mu_A(x) > 0_L\} \xrightarrow{t} x \text{ for all } x \in X,$$

$$(P_L L2)$$
 $\mathcal{F} \xrightarrow{t} x$ and $\mathcal{F} \subseteq \mathcal{G}$ imply $\mathcal{G} \xrightarrow{t} x$,

$$(P_L L3)$$
 if $\mathcal{F} \xrightarrow{t} x$ and $\mathcal{G} \xrightarrow{t} x$, then $\mathcal{F} \cap \mathcal{G} \xrightarrow{t} x$.

The pair (X,t) is called a P_L -limit space. A map $f:(X,t)\to (Y,u)$ between P_L -limit spaces is said to be P_L -continuous if $\mathcal{F}\to x$ implies $f(\mathcal{F})\to f(x)$.

Let P_L -Lim denote the category of all P_L -limit spaces and all P_L -continuous maps between them.

Proposition 2.2. P_L -Lim is a cartesian closed topological category.

Theorem 2.3. P_L -Lim is a quasitopos, i.e. final epi-sinks in P_L -Lim are preserved by pullbacks.

A P_L -Cauchy structure s on X is a subset of $\mathcal{F}_L(X)$, subject to the following axioms:

- $(P_LC1) \langle x \rangle \in s \text{ for all } x \in X,$
- (P_LC2) $\mathcal{F} \in s$ and $\mathcal{F} \subseteq \mathcal{G}$ imply $\mathcal{G} \in s$,
- $(P_L \subset 3)$ if \mathcal{F} , $\mathcal{G} \in s$ and $\{\mathcal{F}, \mathcal{G}\}$ has an upper bound in $(\mathcal{F}(X), \subseteq)$, i.e. $A \cap B \neq \underline{0}_L$ for all $A \in \mathcal{F}$, $B \in \mathcal{G}$, then $\mathcal{F} \cap \mathcal{G} \in s$.

The pair (X,s) is called a P_L -Cauchy space. A map $f:(X,s)\to (Y,u)$ between P_L -Cauchy spaces is said to be P_L -Cauchy continuous if $\mathcal{F}\in s$ implies $f(\mathcal{F})\in u$.

Let P_L -Chy denote the category of all P_L -Cauchy spaces and P_L -Cauchy continuous maps between them.

Proposition 2.4. P_L -Chy is a cartesian closed topological category.

Remark. For a P_L -Cauchy space (X,s), the structure t_s on X, defined by $\mathcal{F} \xrightarrow{} x$ if and only if $\mathcal{F} \cap \langle x \rangle \in s$, is a P_L -limit structure on X and P_L -Cauchy continuity implies P_L -continuity with respect to the associated P_L -limit structures.

Definition 2.5. (1) A P_L -Cauchy space (X, s) is said to be *complete* if for each Φ -Cauchy object \mathcal{M} there exists $x \in X$ such that $\mathcal{F} \xrightarrow{t} x$.

(2) A P_L -Cauchy space (X, s) is said to be separated if $\mathcal{F} \xrightarrow[t_s]{} x$, y implies x = y.

We obtain P. Eklund and W. Gähler completion([1]) of separated P_L -Cauchy spaces.

For a separated P_L -Cauchy space (X, s), a relation \sim on s defined by $\mathcal{F} \sim \mathcal{G}$ if and only if $\mathcal{F} \cap \mathcal{G} \in s$ for \mathcal{F} , $\mathcal{G} \in s$ is an eqivalence relation on s. Let $X^{\sim} = \{\mathcal{F}^{\sim} : \mathcal{F} \in s\}$, where $\mathcal{F}^{\sim} = \{\mathcal{G} \in s : \mathcal{F} \sim \mathcal{G}\}$ is the equivalence class of \mathcal{F} with respect to \sim and let $\iota : X \to X^{\sim}$ be a map $x \longmapsto \langle x \rangle^{\sim}$ and let

$$s^{\sim} = \{ \mathcal{K} \in P_L(X^{\sim}) : \iota(\mathcal{F}) \cap \langle \mathcal{F}^{\sim} \rangle \subseteq \mathcal{K} \text{ for some } \mathcal{F} \in s \}.$$

Then (X^{\sim}, s^{\sim}) is a separated and complete P_L -Cauchy space and s coincides with the initial P_L -Cauchy structure on X with respect to ι .

We call (X^{\sim}, s^{\sim}) the completion of (X, s).

Theorem 2.6. For each separated P_L -Cauchy space (X, s), (X^{\sim}, s^{\sim}) is an epireflection of (X, s) with respect to P_L -Chy_{sep,cpl} and hence P_L -Chy_{sep,cpl} is an epireflective subcategory of P_L -Chy_{sep}.

3. References

- [1] P. Eklund and W. Gähler, Generalized Cauchy Spaces, Math. Nachr. 147 (1990) 219-233.
- [2] P. Eklund and W. Gähler, Fuzzy Filter Functors and Convergence, in: Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht/Boston/London (1992), 109-136.
- [3] P.Eklund and W. Gähler, Contributions to Fuzzy Convergence, in: Recent Developments of General Topology and its Applications, international Conference in Memory of Felix Hausdorff Math. Reserch 67, Berlin (1992) 118-123.