i X|=X] Hx0f Cf¥ Radon—Nikodym 32

}Radon—Nikodym theorem for fuzzy-number—valued measures

Byung Moon Kil’ and Yun Kyong Kim®

ABSTRACT

Using the representation theorem of fuzzy number, we give the Radon-Nikodym thecrem

for fuzzy-number-valued measures

1. Introductoin

Set valued and fuzzy set valued measures have received much attention in the last few
years because of their usefulness in several applied fields such as mathematical economics and
optimal control. The Radon-Nikodym theorem for set valued measures was established by
Debreu and Schmeilder{7] and Hiai[10]. For the case of fuzzy set valued measures, it can be
found in Ban[2], Puri and Ralescul14], Stojakovic[17], and so on. In earlier works, in order to
introduce a notion of countable additivity, the following concept of sums for a series of fuzzy

numbers was used:
(Zw) () = sup [ALyuxd s x = Tz Tlal < o

In this work, we shall introduce a notion of fuzzy number valued measures slightly
different from those in the above works and prove a Radon-Nikodym theorem which
generalizes the result for real valued measures. This will be accomplished by using the

representation theorem of fuzzy number discussed in Goetshel and Voxman{8]
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2. Preliminaries
A fuzzy number is fuzzy set «#: R — [0,1] with the properties;
(1) = is normal, ie., there exists x € R such that 2(x) = 1;
(2) u is upper semicontinuous;
(3) u is a convex fuzzy set, ie, #(Ax + (1 — A)» = min{u(x), :{y)} for x,y € R
and 4 = [0,1];
(4) supp u = cl {xeR; {x) > 0} is compact.
The family of all fuzzy numbers is denoted by E. For a fuzzy set u, we define

~ [{x:dx) 2 a}), 0<Ca<x<1
[u]. = [ s’zclppu,x “ aa"'—' 0.

Then, it is easily established that u is a fuzzy number if and only if
(1) [2], is a closed and bounded interval for each a € [0,1]
(2 [ul, # 0.
From this characterization of fuzzy numbers, it follows that a fuzzy number % is completely

determined by the end points of the intervals [2], = [#,u7].

Theorem 2.1 ([8)). Foru € E, denote u (a) = u, ,u’ (@) = u}. Then

(1) 2 (a) s a bounded increasing function on [0,1];

(2) u" (@) is a bounded decreasing funstion on [0,1);

3 w (1) < u" (1)

4) u (a) and u* (@) are left continuous on (0,1] and right continuous at 0;

(5) If u (a) and u'(a) satisfy above (1)~(4), then there exists a unique v € E

such that v; = u (a), vi = u'(a)
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The above theorem implies that we can identify a fuzzy number u with the parametrized
representation { (#, , #,)10 < @ < 1}. We define a meric d on E by
d(1,v) = supyca<) dil2la,[v],),

where dy is the Hausdorff meric defined as
di{[u),, [v)y) = max(|u, —v |, |ug—v]1).

Also, d(u,Iy) will be denoted by | ull .

3. Integrals of fuzzy number valued functions
Throughout this paper, (2,2, ) denotes a complete 0-finite measure space. If

F: > E is a fuzzy number valued function and B is a subset of R, then F '(B)

denotes the fuzzy subset of £ defined by F {BNw) = suprep Flw)x) for every

@ € Q. The fuzzy number valued function F: £ — E is called measurable if for every
closed subset B of R the fuzzy set F _1(B) is measurable when considered as a function

from £ to [0,1]. This concept of measurability for fuzzy set valued functions was introduced
by Butnariu[3] as a natural generalization of measurable multifunctions. Kaleval[ll] defined
F: @ > FE to be strongly measurable if for each « € [0,1] the set valued function

F,: 2 - KR) defined by Ffw) = [Fw)], is measurable, where I(R) is the set of all

closed bounded intervals on R endowed with the topology generated by the Hausdorff metric

dy. The next theorem shows that the above definitions are equivalent.

Theorem 3.1 For F: Q - E, F(w) = {(F,(w),F; (@) | 0<a<l}, the pllowing
conditions are equivalent.
(1) F is measurable.

(2) F is strongly measurable.

(3) For each a € [0,1], F, and F. are measurable.
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Definition 3.2. A measurable function F: Q@ — E, Fw) = {F,(®),F, (0)|0<a<l} is
called integrable if for each a = [0,1], F, and F. are integrable, or equivclently, if

Fy and Fy are integrable. In this case, the integral of F over A € X is defined by
_ - +
J;Fau = {(J,F.du, [,Fidw0<a<1).

It follows immediately that F is integrable if and only if the real valued function
@~ | F(w)| is integrable. Note that in [25,11,13,16] the terminology integrably bounded

was used instead.

The following theorem first obtained by Puri and Ralescull3] for the case of nonatomic

measure spaces extends the classical Lebesgue dominated convergence theorem.

Theorem 3.3. Let {F,, n=1} and F be measurable fizzy number valued functions such that
F. (@) 4, Flw) for almost every we< Q If there exists an integrable

Junction h: Q—R such that fr all n
| Fa) | < h(w),

then F is integrable and

[Fody & [Fap.

4. Radon—Nikodym theorem for fuzzy number valued measures
Definition 4.1. Let { u,} be a sequence of fuzzy numbers in E and u € E. The

@ n
series Eou,, is said to be convergent to u if d( zlu,», ) — 0 as n — oo,
n= ==

o)

In this case, we call wu the sum of the series Elu,. and write u = Y.
n= n=
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It fcllows immediately that the series Zlu,, converges to % if and only if
o

n B _ n . .
El(ui)a - ua and Zl(ul')af - ua
i= i=
uniformly in @ € [0,1]. Furthermore, if #, = {(#g ., %no) | 0<a<1} are fuzzy numbers

such that qu;' . = u, and Zlu:‘,, = wu, converge uniformly in @, then
n= n=

u = {(u; ,u3)|0<e<l)} is a fuzzy number and u = X u,

nw=l

Definition 4.2 A fuzzy number valued measure is a set function M: 2. — E with

properties

(1) M(G) = I(o)

(2) M U‘A,,) = ZxM(A”) for every sequence {A,} of pairwise disjoint elements of
n= ne=

z.

Note that a set function M: X — E, M(A) = {(M, (A),M; (A)) | 0<a<l) is a fuzzy

number valued measure if and only if

(1) For each e=[0,1], M, and M, are real valued measures,

(2) The families {M, | 0<e<1} and {M: | 0<a<1} of measures are both uniformly

countably additive, that is for any sequence {A,} of pairwise disjoint elements of

2., the convergence of M, ( LJIA,,) = glM;(A,.) is uniform in e< [0,1],

and likewise for {M, | 0<a<1}.

Definition 4.3. If m is a classical measure in 2, and M is a fuzzy number valued

measure, then M is called absolutely contiruous with respect to m if m(A) = 0 implies

M(A) = Iy,
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Theorem 4.4. If F: Q — E is integrable, then the set function defined by
MA) = [ Fa, Ae 3,
is a fuzzy number valued measure which is absolutely continuous with respect to u.

The next theorem is the converse of the above theorem which generalizes the classical
R-adon-Nikodym theorem.

Theorem 45. If a fuzzy number valued measure M: 2, — E is absolutely continuous with
respect to M, then there exists a unique integrable finction F: Q — E such that pr all
Ae 3,

MA) = fAFd,u.
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