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ABSTRACT. In this paper we
introduce the notions of a T L-finite
state machine, T L-retrievability, T L-
separability, T L-connectivity and dis-
cuss their basic properties.

1. Introduction. Automata the-
ory is one of basic and important the-
ories in computer science. Following
Zadeh [4] who introduced the concept
of a fuzzy set, Wee [3| introduced the
idea of fuzzy automata. There has been
considerable growth in the area of fuzzy
automata [1]. The use of algebraic tech-
niques in determining the structure of
autom- ata has been significant. How-
ever, in fuzzy automata, the algebraic
approach is lacking. Recently Malik,
Mordeson and Sen (2] applied algebraic
techniques to study fuzzy automata.
In this paper we introduce the notion
of a T L-finite state machine that is a
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generalization of the notion of a fuzzy
finite state machine and apply alge-
braic techniques to study 7 L-automata.

2. TL-finite state machines

We let L denote a complete lattice
that contains at least two distinct el-
ements. The meet, join, and partial
ordering will be written as A, V, and
<, respectively. We also write 1 and 0
for the greatest element and least ele-
ment of L, respectively.

From this definition one gets immme-
diately T(0,a) = 0 and
T(a,b) < aAbforalla,b € L. A t-norm
T on L is said to be V-distributive if
T(a,bV ¢) = T(a,b) V T(a,c) for all
a,b,c € L. And T is said to be positive-
definite if T(a,b) > 0 for all a,b €
L\ {0}.

Throughout this paper, T shall mean
a positive-definite and V-distributive
t-norm on L unless otherwise specified.

DEFINITION 2.1. An L-finite state
machine is a triple M = (Q, X, ) where
@ and X are finite nonempty sets and
T 15 an L-subset of @ x X x Q, 1.e., T
is a function from Q@ x X x Q to L.

Let I = (Q,X,7) be an L-finite
state machine. Then @ is called the
set of states and X is called the set of
input symbols. Let X* denote the set
of all words of elements of X of finite
length. Let A denote the empty word
in X* and | z | denote the length of r,
where z € X™.

DEFINITION 2.2, Let M = (@, X, )
be an L-finite state machine. Define
T*:QxX*xQ — Lbyr*(q,\.p) =
lifgq=pandt'(q,A,p)=01ifq#p
and 7*(q, ra,p) = V{T{(r*(q, .7},



m(r,a,p)) | 7 € Q} where p,q € Q,
z € X*, a € X. When T is applied
to M as above, M is called a T L-finite
state machine (briefly, a T L-fsm).

The notion of a TL-fsm is a gener-
alization of the notion of a fuzzy finite
state machine. In fact, every fuzzy fi-
nite state machine is a TL-fsim with
T = A and L = [0, 1] obviously. How-
ever, not all TL-fsms are fuzzy finite

state machines.

PROPOSITION 2.3. Let M =(Q, X, 1)
be a TL-fsm. Then 7*(q,zy,p) =
V{T(r*(g,2,7),7*(r,y,p)) | r € Q}
where p,q € @ and z,y € X™.

DEFINITION 2.4. Let M = (Q, X, 1)
be a TL-fsm. Let p,q € Q. p is called
an immediate successor of ¢ if there ex-
ists a € X such that v(g,a,p) > 0. p
is called a successor of q if there exists
z € X* such that t*(q,z,p) > 0.

PROPOSITION 2.5. Let M = (Q, X, 1)
be a TL-fsm. Let p,q,r € Q. Then

(1) q is a successor of g,

(2) if p is a successorof g and r is a
successor of p, then r is a successor of
q.

When M = (Q,X,7) is a TL-fsm,
we denote Sy(g) the set of all succes-
sors of g, where ¢ € Q.

DEFINITION 2.6. Let M = (Q, X, 1)
be a TL-fsm. Let R C Q. The set of
all successors of R, denoted by Sy(R),
in Q is defined to be the set Sy(R) =

U{Sulq) | ¢ € R}.

We will write S{q) and S(R) for Sa(q)
and Sy (R), respectively.

THEOREM 2.7. Let M = (Q,X,7)
be a TL-fsm. Let A,B C Q. Then

(1) if A C B, then S(A) C S(B),

(2) AcC S(4),

(3) S(S(4)) = S(4),

(#) S(AU B) = S5(4)|J S(B),

(5) S(ANB) C S(A)N S(B).

DEFINITION 2.8. Let M = (@, X,7)
be aTL-fsm. Let R C Q. Let v be an
L-subset of Rx X x R and let N =
(R,X,v). The TL-fsm N is called a
submachine of M if T |px x xr= v and
(2) Su(R) C R.

For the convenience sake, we assume
that @ = (@, X, v) is a submachine of a
TL-fsm M. A submachine N = (R, X, v)
of M = (Q,X,7) is called proper if
R#Qand R#0. Clearly, if K is a
submachine of N and N is a subma-
chine of M, then K is a submachine of
M. Note that the number of all sub-
machines of M is finite because Q is
finite.

DEFINITION 2.9. Let M = (Q, X, )
be a TL-fsm. Let R C Q and {N; =
(Qi, X, 1) | i € A} be the collection of
all submachines of M whose state set
contains R. Define < R >=(\;c, {Vi |
it €A} = (niEA Qi, X, ANiea7i). Then
< R > is called the submachine gen-
erated by R.

In Definition 2.9, < R > is clearly
the smallest submachine of M whose
state set contains R. The union | J;c, Vi
of a collection {N; = (Q:,X,7;) | i €
A} of submachines of M is (Uiea @i X, v)
where v = r [(U;EAQ")X?(X(U;GAQ-')'
The union of submachines of M is clearly
a submachine of M.
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DEFINITION 2.10. Let M = (Q, X, 7)
be a TL-fsm. Let R C Q. R is called
free if r ¢ S(R\ {r}) for all r € R.
And R is called a basis of M if R is
freeand < R >= M.

3. TL-retrievability

DEFINITION 3.1. A TL-fsm M =
(Q, X, 1) is said to be T L-retrievable
if it satisfies the following; for p,q €
Q if there exists y € X* such that
*(q,y,p) > 0, then there exists z €
X* such that 7*(p,z,q) > 0; or equiv-
alently, g € S(p) ifand only if p € S(q)
where p,q € Q.

THEOREM 3.2. Let M = (Q, X, 1)
be a TL-fsm. If M is T L-retrievable,
then M has a basis {q;,--- ,qn} and
M = .., < ¢i > in which the state
sets of < ¢; > are disjoint.

DEFINITION 3.3. Let M = (Q,X,7)
be a TL-fsm. Let p,q € Q and let
R c Q. If ¢ € S(R|J{p}), whenever
p € S(RU{q}) and p ¢ S(R), then
M is said to satisfy the T L-exchange
property.

PROPOSITION 3.4. Let M =(Q, X, 1)
be a TL-fsm. Then the following are
equivalent:

(1) M satisfies the T L-exchange prop-
erty.

(2) M is T L-retrievable.

DEFINITION 3.5. A TL-fsm M =
(Q, X, 1) is said to be T L-quasi-retriev-
able if it satisfies the following; for q €
Q and y € X* if there exists t € Q
such that 7*(q,y,p) > 0, then there
exists ¢ € X* such that *(q,yz.q) >
0.

DEFINITION 3.6. Let M = (Q, X, )
be a TL-fsm. Let q,r,s € Q. If there
exists y € X™ such that v*(q,y,r) >0
and 7*(q,y,3) > 0, then r and s are
said to be ¢-T'L-related. If r and s are
q-T L-related and if S(s) = S(r), then

r and s are said to be q-T L-twins.

LEMMA 3.7. Let M = (Q,X, 1) be
aTL-fsm. Then the following are equiv-
alent:

(1) For p,q,r € @ and z,y € X*,
if 7*(g,y,r) > 0 and 7%(g,yz,p) > 0,
then p € S(r).

(2) For q,r,s € Q, if r and s are
q-T L-related, then r and s are q-TL-
twins.

ProposITION 3.8. Let M =(Q, X, T)
be a TL-fsm. Then the following are
equivalent:

(1) M is T L-retrievable.

(2) M is T L-quasi-retrievable. And
for q,r,s € Q if r and s are ¢-TL-
related, then r and s are ¢-T L-twins.

4. TL-separability and TL-
connectivity

DEFINITION 4.1. A nonempty sub-
machine N = (R,X,v) of a TL-fsm
M = (Q, X, 7) is said to be T L-separated
ifS(Q\R)(NR=0.

ProposITION 4.2, Let N = (R, X, v)
be a nonempty submachine of a TL-
fsm M = (Q,X, 7). Then N is TL-
separated if and only if S(Q \ R) =
Q\R.

PROPOSITION 4.3. Let N = (R, X,v)
be a proper submachine of a T L-fsm
M =(Q.X.7). If N is TL-separated.
then C = (Q\ R,X,0) is also TL-
separated where o = T |(Q\R)x X x(Q\R)



DEFINITION 4.4. A TL-fsm M =
(@,X,7) is said to be T L-connected
if M has no T L-separated proper sub-
machines.

DEFINITION 4.5. A TL-fsm M =
(@, X, 7) is called strongly T L-connected
if pe S(q) for all p,q € Q.

PROPOSITION 4.6. Let M = (Q, X, 1)
be a TL-fsm. Then M is strongly T L-
connected if and only if M has no proper
submachines.

THEOREM 4.7. Let M = (Q, X, 1)
be a TL-fsm. Then the following are
equivalent:

(1) M is strongly T L-connected.

(2) M 1s T L-connected and T L-retriev-
able.

(3) Every submachine of M is strongly
T L-connected.

THEOREM 4.8. Let M = (Q, X, 1)
be TL-fsm. Then the following are
equivalent:

(1) M is T L-retrievable.

(2) M is the union of strongly TL-
connected submachines of M.
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