A Novel Fuzzy Morphology, Part I: Definitions
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ABSTRACT

A novel definition for fuzzy mathematical morphology is described. The generalized-mean
operator plays the key role for this definition. Several hard constraints for standard
generalized-mean have been eliminated. Complete mathematical description for obtaining fuzzy
erosion and dilation is provided. The definitions are well suited for neural network
implementation. Therefore, the parameters for the fuzzy definiiion can be optimized using
neural network learning paradigm.

1. INTRODUCTION

Mathematical morphology has been employed in various image processing tasks such as
edge detection, noise suppression, region filling, skeletonization, smoothing, segmentation,
texture analysis, thinning, and more. It has also been used in pattern recognition as a feature
extraction methodology. The theoretical foundations of mathematical morphology lie in set
theory which is well-suited for binary images [Matheron, Serra 82a]. Binary morphology has
been extended to gray-scale morphology using umbra techniques [Nakagawa, Serra 82a,
Sternberg, Giardina, Haralick, Maragos 87] and the lattices theory [Serra 82b, Heijmans].
Fundamental operations for mathematical morphology are erosion and dilation which use the
ordinary min and max operators.

Fuzzy set theory [Zadeh] has been successfully used to describe phenomena and systems
with imprecise linguistic terms (i.e., tall, very tall) used in everyday. A system can be either
crisp or fuzzy, depending on how the membership for an item is determined. While crisp
(Boolean) systems allow the membership to be either one or zero, fuzzy systems allow for the
degree of membership being a number in the range of [0, 1]. In general, for objective function
based algorithms which iteratively minimize a criterion function until a global or local minimum
is reached, the performance of fuzzy versions is superior to that of the corresponding crisp
version [Bezdeck]. Furthermore, fuzzy algorithms are less probable to be trapped in local
minima [Bezdeck].

Main purpose of this paper is to introduce a new definition of fuzzy morphology. In
Section II, we first review the standard morphological operations (erosion and dilation) and the
generalized-mean operator [Dujmovic, Dyckhoff] and its properties. In Section III, we then
provide complete mathematical description for obtaining the definitions of fuzzy morphological
operations using generalized-mean operator. Finally, in Section IV, conclusions and further
works are discussed.



II. BACKGROUNDS

In this section, we first briefly describe the standard definition of two essential operations;
gray-scale erosion and dilation. We then introduce generalized-mean operator which plays key
roles in defining our novel fuzzy morphological erosion and dilation.

2.1. GRAY-SCALE EROSION AND DILATION

Erosion and dilation are fundamental operations for mathematical morphology. The
theoretical foundations of mathematical morphology lie in set theory which is well-suited for
binary images [Matheron, Serra 82a]. An extension of binary operations to gray-scale
operations can be achieved by two different ways: umbra transform [Nakagawa, Serra 82a,
Sternberg, Giardina, Haralick, Maragos 87] and lattice theory [Serra 82b, Heijmans]. We
briefly describe the definition of those operations, and details of theory, other operations,
properties and applications are widely available from the morphology literature [Dougherty,
Haralick, Maragos 87, Maragos 89, Matheron, Serra 82ab, Sternberg].

The erosion of a function f by a structuring element g is defined by

(f ©g)x)=max {y:gx+y<<f}. 1)

The erosion at a point x can be done by two steps: (1) move the structuring element spatially so
that its origin (origin of Euclidean space) is located at x, and (2) find the maximum amount we

can offset (push-up) the structuring element while it is beneath the signal. Obviously, D[gx] €
DIf] in order to satisfy “beneath” condition, where D indicates the domain. An examples of
gray-scale erosion is shown in Fig. 1.

Fig. 1. An examples of gray-scale erosion.

Instead of finding maximum “offset” at a point x, we can find the “minimum difference”
between f (z)’s and gx(z)’s for all ze D[gx]. This notion leads to the formulation of erosion

(f © g)(x) =min {f(z) - gx(z) : z € Dlgx]}. 3]

Note that (f © g)(x) is only defined at any point where gy <<f.




Gray-scale dilation can be defined in a dual manner to gray-scale erosion. Before giving
the definitions, we motivate the duality principle by showing how dilation can be viewed as an
erosion. Instead of translating the structuring element and finding the maximum offset while
keeping the structuring element beneath the signal, we can (i) take the “reflection” of the
structuring element g, (ii) move the reflected structuring element g“toa Point X, and (iii) find
“he “minimum” offset for the reflected-translated structuring element (g )x to be “above” the
signal. We should note that the signal is restricted to the domain of the reflected-translated
structuring element (g*),. Figure 2 illustrates an example of gray-scale dilation which is
‘ormalir 2d mathematically by

(f ®g)x)=min (y: (g*)x+y>>f). 3)
—
% g
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Fig. 2. An examples of gray-scale dilation.

Instead of finding the minimum “offset” at a point x, as we did for gray-scale erosion, we

can find the “maximum difference” between f (z)’s and (g*)x(z)’s for all ze D[(g*)x]. This
notion leads to the formulation of dilation

(f ® g)(x) =max (f (@) - (g")x(2) : z € D[(g*)x]}. @

2.2. GENERALIZED-MEAN OPERATOR

The generalized mean operator is defined [Dujmovic, Dyckhoff] as

1/p
g(x;;p,w;) = [Zwixi"] ()
where
Tw, =1 w,;>0, 0<x,<l,andp=#0. 6)

i

This operator has several attractive properties. For example, the mean value monotonically
increases with respect to p when the w;’s are fixed [Dyckhoff]. Thus, by varying p from -o° to



+c0, we can obtain all values between min{x;} and max(x;}. This property was used to
simulate linguistic concepts such as “at least” and “at most” by choosing appropriate values for
the parameter p [Krishnapuram 88 & 92a, Lee]. The w;’s can be thought of as the relative
importance factors for the different information criteria x;’s. This property was also used for
redundancy detection for a hierarchical fuzzy information fusion system [Krishnapuram 92ab,
Lee]. The generalized-mean value is equal to harmonic mean if p = -1, geometric mean if p =
0, and arithmetic mean if p = 1. ‘

. FUZZY EROSION AND DILATION
The assumptions in (6) can be kept as hard constraints. However, we use soft

assumptions in our definitions in order to implement a neural network system later on [Won
95b]. The following theorem provides the motivation.

Theorem: Suppose we have a finite set {x;;i=1,2, > N}. If w; >0 and x;2 O for all i,
then
lim g(x;; p, wi) = min{x;} and lim g(x; p, w;) = max{x;}.

p—= p-rt+eo
Proof: For any k,
1/p Y 1/ y
g(xi;p,wi)=[2i‘,wix§’] = xkl:z}(wi(;t] +wk] =x,[f(p)]"
where

P
f(p)= X W;(%‘) +w,

izk "

Let xx be min{x;}. Then,

p p
lim (L] = lim (E‘L) =0, because 0 s(l(-‘-‘—)<1.
p-y-eo| X, P+ X X,

Thus,
lim f(p)=w,.

po—o°

Note that

Inf 1
n f(p) im nw,

lim =0
po- P po== P
Therefore,
In[f
lim [f(P)I"? = lim exP{—r}%ﬂ} =exp(0) =1
p—-°

p—c°

and lim g(xi; P> Wi) = Xk = min{x;}.

p-o

Let xi be max{x;}. Then,

P
lim X =0, because 0 < X <1.
po+ee| X, X,

In the same manner, we can show that lim g(x;; p, w;) = Xy = max{x;}.
portoo
Q.E.D.




From this theorem, we can formalize the erosion and dilation with the generalized-mean
operator. Assume, for a while, that f (z)-Ax(z) 2 0 and f (z)-(m *)x(z) 20forallz. Letus

use the notation g(x;; p = Too, w;) to denote 1im g(x;; p, w;). Then erosion and dilation can
p-stoo

be represented using the generalized mean:

Erosion : (f © g )(x) = min {f (z)-hx(z) : Z € D[hx]]}
= g{f @)-hx(2); p = -°0, w;} (72)

Dilation : (f @ g )(x) = max {f (z) - (m*)x(z) tZe D[(m*)x]}
= g{f (@) - (m™)x(2) ; p = +00, w;}. (7b)

To avoid the assumption that f (z)-hx(z) 2 0 and f (z)—(m*)x(z) 2 0 for all z, we can use a

one-to-one, increasing function r:[-oo, +00] [0 +o0]. This modification yields modified
definitions of erosion and dilation:

Erosion : (f ©, g )(x) = g{r{f (z)-hx(2)); p = -o0, w;} (8a)

Dilation : (f ®, g)(x) = g{r(f @)-(m™)x(@)) ; p = +0, w;}. (8b)

Note that the weighting factor w;’s do not play a role in these definitions. These modified
definitions have empirically shown that they behave similarly to ordinary ones with a sigmoid
function for r [Gader 93a, Won 95a]. One can use other functions that satisfies the
assumptions, such as a clipper function which was defined by

0 ifx<0
r(x)=<4x if0<x<1. )
1 ifx21
At this point, defining fuzzy erosion and dilation is straightforward. They are formalized
as
Fuzzy Erosion : (f ©fg X(x) = g{r(f (2)-hx(2)); p < 0, w;) (10a)
Fuzzy Dilation : (f &7g )(x) = glr(f @-(m*)x(@) ; p >0, w;}. (10b)

Note that the weighting factor w;’s are optional. If the factor is involved, the definition is a
“weighted” fuzzy erosion and dilation.

IV. CONCLUSION
We have described a novel definition for fuzzy mathematical morphology. The
generalized-mean operator played a key role in this work. Some hard constraints for the

standard generalized-mean operator has been eliminated to simplify the definitions. Our
definition is well suited for determining the parameters using neural network learning paradigm.



Therefore, the parameters for the fuzzy definition can be optimized using neural network
learning paradigm.

The main goal of this paper was to introduce a new definition for fuzzy morphological
erosion and dilation. We believe that further refinements of these definitions are necessary.
Furthermore, a neural network implementation to design the structuring element and to
determine the fuzzy membership parameter and the weighting factors is the most attractive study
[Won 95b].
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