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Abstract

One dimensional optimization problem is considered. we propose a method to find the global

minimum of one-dimensional function with no gradient information but only the finite number of

input-output samples. We construct a learning network which has a good learning capability and

of which global maximum(or minimum) can be calculated with simple calculation. By teaching

this network to approximate the given function with minimal samples, we can get the global

minimum of the function. We verify this method using some typical examples.

I. Introduction

To find the global maximum(or minimum). we adopt

a special learning network so-called OBLN
(Orthogonal Basis based Learning Network) which is
designed to have some useful characteristics. One of
these characteristics is that we can get the global
maximum(or minimum) of this network by using
only a simple calculation with respect to each values
of learning parameters. The approach is to teach this
network to learn the target function with minimal
samples, so that the global maximum(or minimum)
of target function can be achieved through the
learning network.

In this paper, we suggest a learning network

which satisfies the spec. mentioned above, and prove
a theorem which is concerned with the number of
samples which is required to teach the network so

that it can mimic the target function completely.

1I. OBLN-Orthogonal Basis based

Learning Network.

The structure of the OBLN is the linear combination

of some orthogonal functions as follows.
Nx,w)y=>w, -¢,(x)

where W is the learning parameter and the ¢ is the
orthogonal bases defined on [0,T}. The orthogonal
basis set is generated from a special function set

called base function set through the Gram-schmidt



procedure.
The base function set B is a set of functions
which are real valued function defined on [0,T], and

satisfies following equations.

B={3,| $.:[0TI>R $(=3G-n, i=012, ]

_ —t-(t-——z) s 0<t<—T—
=3 . 2 r 2
(1—5)~(t—7’) R 5<t<T

Fig. 1 shows the plot of the base function set.
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Fig. 1 Shape of base function

The network can be represented using the base
function set instead of basis function set by basis

change as follows
N(x,w)= Z w, - $(x)=) W, 4,(x)

where the W, can be calculated from the W, using

the following relation.

wl QWI
— -1
W’ Q wi
where ith column of the matrix Q is the

representation of the ¢,

i

with respect to @, , and this

can be expressed as follows.
Qi thootionn = [5.|¢1 $i|¢2 A $i|¢i—1 "5:"]

where$,|¢]
andg, .

denotes the inner product of @,

A characteristics of this network is that at each
interval shown in (Fig. 1), the network can be
expressed with only second order polinomials so that
the calculation of the maximum(or minimum) value,
which can be calculated from setting the derivative
of the polinomials zero, drops into a problem of
solving just a first order equation, that is, in the case

of first interval,
Now,0)=>"%,-¢,(1)
T
=>yw - (-t (t ——
2F D)
Then the optimal value in this interval can be
calculated by solving the following equation.
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After the learing of the target function is
finished. we can get the maxima(or minima) by
solving the first order equations in each interval, and
the largest(or smallest) value in these maxima(or

minima) is the global maximum(or minimum).
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III. Number of sampling

What remain are how we can learn this network
efficiently and how many samples we need to teach
the network completely. The following theorem gives

the minimal numbers of sampling required.

Theorem 1.
Let y €H be a real-valued function on [0,T] and
assuming that y can be represented by OBLN
within Wy-th order, that is,

YO = 2Y4,00)

where Y, is learing parameter and ¢, is i-th
order orthogonal basis which is generated from

so-called base function set
B={4] #:00T1>R F0=900, i=012.}

through Gram-schmidt process. If 5, can be
represented within We-th order Fourier series,
then the sufficient

condition for complete

sampling is
N > 2-W,-W,

where N = T/Ts ( Ts : sampling period ).

The proof of above theorem is very similar with
the sampling theory. Before proof, we are going to
show two lemma which shows the frequency

characteristics of orthogonal basis set.

Lemma 1
Let Y, be the representation of y(t) with respect

to a orthogonal basis ¢(t), that is,

W0 =306,
Then the followings are hold.
M FO) =YF, o
<

@ =30 Fo)
~

@ =3r. oo
e =

where

F(»)* is Fourier coefficient of y(t)
and @' is Fourier coefficient of ¢ (t)

Lemma 1 can be proved as following.

Y= Zle,, 9.0 = i)’"icp: et

E=—w

Vo=, w08, = [y Y e

= kaD: LT) y(e *dr

Lemma 2
Let a orthogonal function sequence ¢,,9,,

..., ¢, be generated from a sequence of base



function El , az yeers 5,, , where

6.B8={3|6:00TI>REW=4G-0,i=012,}

If @, can be represented within Wg-order
fourier series, then ¢ can be represented within

n

nx W -order fourier series.

X(t)

|
1
|
!
|
!t Ts |

-« —»
T

Fig. 2 Sampling the target function.

The proof of theorem 1 is shown in the following.

Proof>
Let x(t) be the target function, and y(t) be the
sampled function with a priod Ts (Fig. 2), that is
y(t) = p(t)-x(1)
where  p() =35 (1 -kT).
k=~
Then
Y, =2 0 F(y)
k=—w

= S0k 3 F(p) R

k=

where
NIT ifk=N-m
F(n)k = . , m:_,.,—2,—1,0,1,2,...
’ 0 otherwise
Thus
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We are going to choose N such that

© e
S D= YO =0 for m=0-
k=-o

- kW,

and , this makes

N& Sprgr N
Vg 2 n L =,

For this, the following condition is sufficient

(Fig. 3, Lemma 2)

m-N-n"W, > nW,

(n+n")-W,

I

N (N>0,m#0)

The minimum value of |m’ is 1, and the
maximum value of n’ is Wy and generally this is
equal to the maximaum value of n because the

maximum value of n is the order of OBLN. Thus

N > 2.W.-W,

nWe oN-"WE mN+nW F

Fig. 3 Frequncy characteristic of sampled data



IV. Learning with OBLN

The learning problem is stated as follows. Given N
data points {(x‘_,d,.) |x, €R, d, eR}, find the
value of learning parameters, so that OBLN satisfies

following equation.
d, =N(x,w)
= Z w/ ) ¢/ (x. )

From the theorem of previous chapter, if the
order of highest component of target function is
given, we can see the number of the minimal
sampling, and with this, the target function can be
interpolated completely. There are two kinds of
learning method. First method is using the method to
find the solution of a linear problem. To find the
coefficients w, one simply evaluates above equation
at the given data points. The following linear system

is obtained:
d = Aw
where A, = @, (x,). Then the solution is
w =A4"-d.

The other learning method is related with the
gradient descent methods. The iterative techniques
are based on refining estimates of the optimal weight
vector and usually no matrix inversions are
performed. The updating rule is shown in the

following. If we let the cost function be

E=Y(d ~Ne.w) =Z("' RAZIY ’} ’
1 j

then the updating rule is

b+l L3 .
wﬂ - wn - 77
W 14

=W, +2:7 ) 6,9, (x,)

where ¢, =d, - N(x,w)=d, —ijgbj(x,.)
7

V. Experiments

Fig[4]-Fig[10] shows the result of learning and
finding the global minimum of a target function

shown below with various sampling period.

v (1)=301-30)

The highest order of target function can be said

9, and the OBLN can be expressed as follows.

Y=Y ()

If the highest order of fourier series of the first
order base function is considered as 1 approximately,
then the number of minimum sampling is
19(>2*%9*1).

Fig.[4]-Fig.[7] shows the result with increasing
the network order. In these figure, one can see that
the better OBLNIearns the target function, the more
precise the global minimum given by OBLN is.
Fig[8] shows the learning result with marginal
sampling. Fig[9] is the result with N samples and
this is under-sampled case.

Fig[10] is another under-sampled case. This
shows the result of learning with 14th order OBLN
rather than 9 order. This means over-structured case
and, more sampling ( more than 23 =(9+14)*1) is

needed.
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Fig. 6 Learning with small network 3 and its gloval
minima.
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Fig. 7 Learning with full network.
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Fig. 8 Learning with marginal sampling

Under sampling case(Ts=T/20)
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Fig. 9 Learning with under-sampling
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Fig. 10 Learning with over-structured network but
same number of sampling

V1. Summary.

We proposed a method to find the global
maximum(or minimum) of one dimensional real
valued function. In this method, a learing network
called OBLN, which can give its global maximum(or
minimum) with simple calculation, is tought to
mimic the target function and after the learning is
complete. we can consider the global maximum(or
minimum) of OBLN as that of target function. We
also give a theorem which deal with the minimum
number for complete learning. With this theorem,
one can teach the OBLN and get the global optimal
value without searching the whole input domain.
Finally.the experimental results justify the proposed

algorithm.
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