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( Acoustic Radiation from a Finite-length Shell with Substructures Subjected to an Impulsive Load )
( Sung-Hoon Choi )

1.INTRODUCTION

Shell structures submerged in a fluid are often subjected to time
harmonic or impulsive vibration forces. Several authors have already
investigated the harmonic excitation of submerged shells. 1t is well
known that an analytic solution exists if the outer shell geometry
conforms to a separable coordinate system. For other geometries, a
numerical approach is needed. The most widely employed numerical
methods are based on boundary or finite element techniques, in which
the surface response is expressed in terms of local shape functions.
Some of the methods are summarized in a recent survey by Chien et
al. [1]. An alternative method using global shape functions, developed
by Wu [2] and Ginsberg efr al. [3], uses a variational method to
determine the relationship between the surface pressure and surface
velocity for axisymmetric bodies. Several papers since then have
progressively extended the generality of the formulation [4-6]. The
variational principle formulation has been proven to be an effective
basis for studying the effects of substructures in capped cylinders on
acoustic radiation [7,8].

Time domain analysis provides insight into the radiation
phenoniena that can not be seen in the frequency domain. Keer et al.
[9] studied the transient response of an elastic shell using Laplace and
Fourier transforms. Stepanishen and Ebebezer [10] investigated the
transient response of finite cylinders in an infinite rigid baffle
subjected to axisymmetric excitations. Kaduchak and Marston [11]
used a ray method to study the time domain scattering of tone bursts
by spherical shells. Wah! and Bolton [12] presented a method by
which the fast Fourier transformation algorithn can be used to predict
the response of line-excited, fluid-loaded panels. Brévart and Fuller
[13] studied the impulsive response of fluid-filled elastic cylindrical
shells of infinite length using a double Fourier transformation in the
wave number and frequency domains. They demonstrated the
contributions of various waves to the structural response and their
propagation path by evaluating individual pole contributions to the
total responses. Utschig [14] used the same approach to find the
impulsive response of an infinitely long submerged cylindrical shell.
He also studied the effect of a spring-mass substructure on the near-
field pressure response. Mann et al. [15] analyzed the vibrational
energy of capped cylinders using data from near-field acoustical
holography measurements. They examined the exchange of energy
between the shell and the acoustic field for finite time duration forces.
In many of these studies [11, 12, 14, 15], the fast Fourier transform
has proven to be an effective method to approximate the response in
the time domain.

The purpose of the present paper is to investigate the response
of capped cylindrical shells subjected to impulsive loads. First, the
equations of motion for harmonic excitations are derived based on a
Lagrange energy formulation. A variational principle is used to
determine the impedance relations between the surface pressure and
the surface velocity of the shell. Then, the responses evaluated at a
discrete set of frequencies are transformed to the time domain using a
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Fast Fourier Transform technique to obtain impulsive responses. The
proposed method is very efficient in such problems where responses at
many closely spaced frequencies are required. The response of a
capped cylindrical shell is compared with that of an infinite fluid-
loaded cylindrical shell. The effects of bulkhead substructures on the
near-field response are also investigated. The contributions of the
elastic waves, the driving force and the bulkhead/shell interaction to
the near-field pressure are exhibited. Physical interpretations of the
results in terms of energy exchange between the shell and the
surrounding fluid are presented.

2. FORMULATION OF EQUATIONS OF MOTION

The main structure considered in this paper is in the shape of an
arbitrary body of revolution. Internals to the shell are axisymmetric
substructures which are connected to the shell. The shell is subjected
1o a time-harmonic loading. In this section, the e’ term, where o is
the circular frequency and 1 is time, will be omitted for convenience
with the understanding that all harmonic response expressions are to
be multiplied by this term.

First, the arc-length parameter, s, is defined such that s = -s,,
and 5 = s, correspond to the ends of the shell. The shape of the
axisymmetric shell is described in parametric form by functions r(s)
and z(s), which are the coordinates of the generating curve in the radial
and axial directions, normalized with respect to the cylindrical shell
radius a. The position vector of each point on the shell is described by
x = x(5,0), where 0 is the azimuthal angle.

The derivation of the governing equations starts with an
expansion of the surface pressure and displacement using global shape
functions. For an axisymmetric shell geometry one can use Fourier
series expansions to represent the 8 dependence of all variables. The s
dependence is expanded in a series of basis functions. To develop a
non-dimensional representation, we scale the displacement by the
radius a and the pressure by pc’, where p and ¢ are the fluid mass
density and sound speed, respectively. Thus the pressure p and
displacement w of the shell are written as

Ne ¥p
pix, 1) = pct z > P o () cOS 10 n
n=0 m=\
N, N,
wx,0)=ay > w,.b, (s)cos(nd —8,) 3}
n=0 m=1

where pp and wi, are modal amplitudes and Wa(s) and §.(s) are the
pressure and displacement basis functions. The displacement of the -
th substructure is expanded as

Ne &
u(r®)=ay y u,,,0,,,(r)cos(n® - 8) 3)
n=0i=1
where u;,, are modal coordinates and the v;,.(r) are the in-vacuo
modes of the k-th substructure with free boundary conditions. The
displacement basis functions have three components which correspond
to the displacements tangential and normal to the shell surface. Herein,
bold lower case letters are used to denote such three-component
vectors.
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The number of circumferential modes, N., and the number of
basis functions, N, and N,, are chosen to be sufficiently large such that
the contribution of the last term in the series is several orders of
magnitude smaller than the entire sum. One of the virtues of the
variational principle is that, once a sufficient number of mode is
included in the expansions for the surface pressure and displacement
fields, convergence is extremely rapid.

In the present paper, the natural modes of the dry shell will be
used for displacement basis functions ¢m(s) and a Fourier series will
be used for the pressure basis functions Wm.(s). Also only driving
forces symmetric about 8 = 0 will be considered. Hence, the cosine
series expansion is used for the pressure and displacement fields which
are symmetric with respect to 8 = 0 and the sine series expansion is
used for the circumferential displacement field which is anti-
symmetric. In Eq.(2) the phase angle 0, is used to express the different
dependence on 8 of the two circumferential expansions. The value of
6. is n/2 for the circumferential displacement and zero otherwise,

To construct Lagrange’s equations, the kinetic and potential
energy terms for the shell and substructures, and the work done by the
applied harmonic loading are first derived. The constraints are
specified by equating the displacements and rotations of the shell and
substructures at their connections. Since the internal substructures are
axisymmetric the connections are circular arcs defined by x = xu(s:,0).
The constraint conditions are given by

g Do (54)
Z{Z ‘”'"[v X (54 )J )
& v, (a)
guj"_,[v . u:,,.,, (a)]} cos(nd —8,) =0 @)

for k = 1,2, -~ K. Equation (12) holds for every circumferential mode
number n, hence one can rewrite it as

T s T
fod =€ W, —Coy W, &)

T T
where w, = {w," w,\,“,,} and u,, = {u,,,',‘ u_,‘,,_k} are
vectors of displacement coefficients for the shell and the k-th

substructure. The components of the matrix ¢, and ¢} , are given by

_¢1n(51) Vx¢,(s)

>¢.\'n (5:) Vxby(s)
and )
—Ulrv,l (@) Vxv,,(a)

«
Cox =

LYV 5 (@) Vxv, (a)

Following standard procedures for the derivation of Lagrange’s
equations, the Lagrangian L, can now be constructed as

L,=T, -V, -U-U/ +A,-1, M

for each circumferential harmonic n, where 7, and V, are the kinetic
and potential energies of the shell/substructure system, A, is a vector

T .
of Lagrange multipliers and f, =|f' - f | is a vector of

constraint conditions. It is possible to write the Lagrange’s equations
for each circumferential harmonic because the circumferential
expansions are orthogonal for axisymmetric geometries and the energy
expressions decouple for each circumferential mode 7. The work done
on the shell by external forces consists of two parts: the work U
done by an external harmonic pressure excitation q°(s,8) and the
work U/ done by the fluid pressure. The work quantities are given
by

= pe aBqu . ©)

and

= pe G’qu W ©)

Here g, and g/, are the generalized forces for the external and
fluid loading, given by

on = [, [ [a7(5,0) - 4, ()] cos(n® ~ Bs)r(s)dsc® (10)
and
NI’
D = =2 Rut.u P (n
=1

where R, are displacement-pressure coupling coefficients defined by

Rupw =72, [7 9, ()[0(5) - b,,, ()} (5)ets (12)

Here &, = | + 8w and §; denotes the Kronecker delta. Lagrange’s
equations can now be written as

dfon) oL, 3

di\og;) oq, 9
Here, the generalized coordinates q; are given by w,,, u,.., and the
components of A,. But he system of equations derived by using Eq.
(13) is not complete, since the fluid loading term is still unknown.

Now, the variational principle formulation [2-8] will be used

to obtain a relationship between the surface pressure and surface .
displacement. The relation between the unknown surface pressure and
displacement is given for each circumferential harmonic, #, as

A, p.=B.,w, - (14)

T
where p, = {p,” Paw pNF”} is a vector of surface pressure

coefficients. The elements of matrices A, and B, are given in the
Reference [8].

Applying Eq. (13) yields a complete set of simultaneous
equations for the combined shell/substructure system:

A, -B, 0 0 |p, Y
R, D, 0 C, w, q,
. . = (18)
0 0o D, ~Clu | |o
0 ¢’ -¢" o |Aa,] |o

The submatrices and subvectors in the above equation are related in an
obvious manner to the coefficients defined previously. The elements
of the matrices C, and C; are given by

=fen € o) Ci=le, @, oGk G9)
The matrix D,, is diagonal with elements defined as
aZ
- 2 2
Dy, = c_z Min(“’ Pt )5,7 (20)

where My, and @, are modal masses and natural frequencies of the

dry shell. The matrix D, represents the substructure equations written
as

D
D; = e @n
0

p*

n K

with its submatrices given by
2
R a
Dy, = c_2 M, (“) :z,.,: ~w? )‘S if 22)

in which My, 4 and @, & are modal masses and natural frequencies of
the k-th substructure. The system of equations (18) offers a solution of
the problem at hand, simultaneously solving for the vector of surface
pressure coefficients, the shell and substructures modal coordinates
and the vector of Lagrange multipliers. After Eq. (18) has been solved
for each n, the pressure and displacement coefficients are substituted
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into Egs. (1) and (2) to obtain the surface pressure and displacement.
3. FFT IMPLEMENTATION .

To find the response (pressure or displacement) of a sheli in the
time domain, it is necessary to perform inverse Fourier transforms. Let
p(x.ka) be the response in the space-frequency domain and F(x,1) be
its transformation pair in the space-time domain, where ka = oa/c is a
non-dimensional frequency parameter and 1 = fc¢/a is a non-
dimensional time. The inverse integral can be numerically evaluated
by using the inverse fast Fourier transform. Using the method
described in the previous section, the response in the frequency
domain is first evaluated at increments of Aka over a range [0:kdma].
The frequency spectra are then extended to the negative frequency
range so that they are complex conjugate symmetric about ka = 0. The
result of the fast Fourier transform is then a real time sequence with
time increment At = 1/ kam« representing the response due to a short
duration load.

One of the side effects in using the FFT are the side lobes in the
input force which make the response more difficult to interpret. To
reduce the side lobes, the response spectra of the input is weighted by
a filter, defined by F(ka) = cos’[n(kalkan)] which is usually called a
“hanning window” [16]. With this frequency filter, the maximum side
lobes decreases to -32dB below the main lobe, while the main lobe
width nearly doubles.

The use of the FFT creates another source of error, which is
often referred to as aliasing or “wrap-around” error. This error occurs
as a result of the inherent assumption in the FFT algorithm that the
data record is periodic. A sufficiently small frequency step Aka is
necessary to avoid this aliasing phenomenon on the time period of
interest. This is especially true for lightly damped structures. The
inverted time sequence can be enhanced by zero-padding. The time
sequence of the zero-padded signal contains no new information but
provides an interpolation of the original time sequence. In the
following analysis the frequency spectra are expanded to

[—_k_;ml('.;;mxx] by zero padding and the new time interval is

At =% / kams For the example studies in the next section, the
original calculation are performed for frequencies from ka = 0.005 to
10.0 with a frequency step Aka = 0.005. The response spectra are then
extended to the negative frequency range and zero-padded to result in
a total of 16,384 frequency values in the range [-40.96: 40.96).

4. EXAMPLE STUDY

To demonstrate the method, a finite-length shell with a
cylindrical mid-section and hemispherical endcaps is considered (Fig.
1). The shell is modeled as a steel structure submerged in water. The
ratio of the mass densities of the shell and water is 7.84:1. The ratio of
the overall shell length to the radius is 12:1 and the ratio of the
cylinder radius to the wall thickness is 50:1. The internal substructures
consist of two bulkheads, modeled as circular plates of thickness 0.25a
attached rigidly to the shell at s = 1.5. The bulkheads generate radial,
longitudinal and circumferential forces and bending moments at the
connections. Structural damping is introduced by assigning a complex
value to the elastic modulus such that £ = £, (1 - in), where £, is the
nominal real-valued modulus and 1 is the loss factor. A loss factor of
0.04 is used for both the shell and the substructures. In-vacuo modes
of a shell and a circular plate are used for displacement basis functions
and a set of sinusoidal functions are used for pressure basis functions.
Details on the shape functions are given in previous papers [7,8]. Two
different kinds of forces are considered in the example study: a line
force described by a function £1)5(s)cos(n®) and a point force
described by A1)5(s)5(9).

4.1 PRESSURE FIELD

First, the surface pressure response of an empty shell subjected
to an axisymmetric ring force (n = 0) is presented as a series of
snapshots in time (Fig. 2). For comparison, the same snapshots have
also been generated for an infinitely long cylindrical shell with
periodic ring forces spaced at intervals of 2s,a. Thesc benchmark
results are computed using a modal-based solution given in Ref. [17].
In Fig. 4 one finds that the surface pressure responses coincide aimost

r

pressure load, ¢¢
]

bulkheads
3a
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Figure I. Example problem geometry.
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exactly for time T < 6.75. For these figures, the shell flexural waves
have not yet reached the endcap. Although the faster tongitudinal
waves have already reached the endcap, these waves have small radial
components as compared to the flexural waves and generate relatively
small surface pressure. The most significant pressure generated by the
longitudinal wave occurs at the endcap because of the effects of
curvature [18]. This is observed in Fig. 4 at time t = 2.15 where a
slight pressure disturbance appears at the endcap portion of the shell.
The surface pressure response of a finite shell starts to deviate
significantly from that of an infinite shell after the flexural waves
reaches the endcap portion. At larger times, the waves travel around
the shell and the amplitude level decays due to the radiation and
structural damping’

The pressure field in the surrounding fluid can be calculated
directly from the Kirchhoff-Helmholtz integral. The pressure fieids in
the fluid are presented as snapshots in time using density plots where
the horizontal axis is the axial distance z/a and the vertical axis is the
radial distance r/a. In Figs. 3-5(a) are shown the near-field pressure
generated from an empty shell subjected to an impulsive ring load.
The near-field pressure for a shell with bulkheads are also calculated
and the difference in pressure fields generated by shells with and
without bulkheads are presented in Figs. 3-5(b). The time t = 0.00
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Figure 2. Surface pressure along the arc-length parameter s of an
empty finite length shell (solid lines) and an infinite cylindrical shell
(dashed lines).
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Figure 3. Near-field pressure distribution in the r-z plane at T = 0.00.
(a) empty shell; (b) difference in pressure due to bulkheads.
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Figure 4. Near-field pressure distribution in the r-z plane at T = 1.60.
(a) empty shell; (b) difference in pressure due to bulkheads.

corresponds to the peak of the impulse. Since the driving force is not a
perfect impulse the pressure field at © = 0 is already spread over a span
of the sheil and into the fluid. The near-field pressure consists of
contributions from the elastic waves on the shell and those from the
direct radiation from the drive point. The direct radiation is identified
as a circular arc centered at the drive point. The structure borne waves
are generated in the fiuid by flexural waves propagating in the shell
surface, as seen in Fig. 5(a). These structure borne waves are
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Figure 5. Near-field pressure distribution in the r-z plane at © = 9.00.
(a) empty shell; (bj difference in pressure due to bulkheads.

evanescent, decaying exponentially away from the shell surface. This
is because the shell flexural waves are predominantly subsonic [19]. A
pressure field is also generated by the longitudinal waves. At time © =
1.60, the longitudinal waves hit the cylinder/endcap interface, couple
to transverse vibrations of the endcap, and produces radiating acoustic
waves as shown in Fig. 4(a). The effect of the bulkheads on the
pressure fields, as shown in Fig. 5(b), is due to the interaction forces at
the connection point. Direct radiation from the connection point as
well as from the evanescent structure borne waves, due to the reflected
and transmitted shell waves, can be observed.

4.2 ENERGY IN THE SYSTEM

An alternative approach in terms of intensity will be presented
in the next section. This analysis will provide interesting results to
understand energy exchange between the shell and the surrounding
fluid medium.

The instantaneous intensity normal to the shell surface is
defined as

1,(x,0) = p(x,)n(x) - w(x,?) (23)

this represents the flux of energy propagating through the point x in
the direction normal to the shell surface. A positive value of the
instantaneous intensity means that the shell injects energy into the
fluid while a negative value means that the fluid injects energy back
into the shell. The total energy that passes through a point is calculated
by time-integrating Eq. (23). The instantaneous intensity and time-
integrated intensity have been calculated for the finite shell subjected
to a point impulse at s = 0 and 8 = 0. In Fig. 6 are shown the
instantaneous and time-integrated intensity at two different points on
the shell, one at the drive point and the other at the endcap. At first,
the shell and fluid exchange energy, but then the instantaneous
intensity approaches zero because the vibration of the shell decays to
zero due to damping. The time-integrated intensity curves show that
the net energy flows from the shell to the fluid at the drive point and
flows from the fluid to the shell at s = 6. Figure 6(b) shows that the
time-integrated intensity becomes negative which indicates that more
energy re-enters to the shell. This phenomenon happens for most
points on the shell except near the drive point. It is also observed that
the intensity level decays rapidly to a very low level at the endcap.
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The total energy radiated into the acoustic medium can be
calculated by integrating the time-integrated intensity over the entire
shell surface. The total energies radiated from the shell subjected to
point impulses, with and without bulkheads, are presented in Fig. 7.
The total energy input, which is simply the integration of the force
multiplied by the shell velocity at the drive point, is also calculated.
One can observe that the radiated energy reaches a maximum soon
after the impulse occurs and decays to an asymptotic value. After the
vibration energy decays to zero, the total input energy is equal to the
sum of the energy radiated into the fluid and the energy dissipated in
the shell by damping. Figure 7 shows that 0.91% of the energy input is
radiated from the empty shell and 2.23% is radiated from the shell
with bulkheads. This result is consistent with the results reported in a
previous paper [8] that the waves generated at the bulkhead
connections have radiating supersonic components. Figures 8(a) and
(b) show for each circumferential harmonic, n, the net energy input

{a)s= 0.0
400 | . Instantaneous intensity /pc’
Time- integrated intensity /pc’a” - ___.._
200 |
0
200 . . . . ,
0 0 0 . 40 50
time, T
(b)s=6.0
4r
Instantaneous intensity / pc’ -
2 Time- integrated intensity /pc’a - - - - oo _ -
4 L . . . . .

Figure 6. Time history of instantaneous intensity and time-integrated
intensity. (a) s = 0.0; (b) 5 =6.0.
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Energy radiated (empty shell)

— - — Energy input (shell with bulkheads)
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Energy
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Figure 7. Net energy input and energy radiated for an empty sheil and
a shell with bulkheads.
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Figure 8. Net energy input and energy radiated for each
circumferencial mode number. (a) empty shell; (b) shell with
bulkheads.

and energy radiated from the shell with and without bulkheads. These
figures show that almost ail of the energy is radiated through the lower
circumferential harmonics (0 < n < 6). The beam mode (# = 1) is seen
to be the most efficient radiating mode. It is also seen that very little
energy is injected to the system when n 2 20. This is because the lower
cut-off frequencies for these modes are higher than the dominant input
frequencies.

5. CONCLUSIONS

A method for determining impulsive responses and acoustic
radiation for submerged shells of finite length has been presented. The
method is a modal-based method, and uses a surface variational
principle to obtain data in the frequency domain. The fast Fourier
transform technique is used to convert the data to the time domain.

The surface pressure responses of a cylindrical shell with
endcaps were compared with those of an infinite shell. It was shown
that the surface pressures coincide exactly before any significant
reflections from the endcaps occur. Traces of different types of waves
were identified from the dispersion relations of the infinite shell. The
contributions of flexural and longitudinal waves and these due to the
direct radiation from the driving force to the fluid pressure were
demonstrated using near-field plots. The exchange of energy between
the shell and fluid was examined for shells with and without
bulkheads. It was shown that a significant amount of the energy which
enters the fluid returns to the shell and most of the energy is dissipated
in the shell. It was also shown that the shell with bulkheads radiate
significantly more energy into the far-field than the empty shell.
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