뉴럴네트워크를 이용한 불안정 공정의 탐지 및 인식

Neuro detection and identification of nonstationary manufacturing processes

  • 발행 : 1995.04.01

초록

공정으로부터 얻어지는 공정특성치는 일반적으로 시계열로 모형화 할 수 있다. 그러므로 공정의 상태변화 감지는 공정을 묘사하는 시계열 모형의 출력에 대한 통계적 분석이나 모형을 형성하고 있는 파라미터들에 대한 감시를 통하여 가능하게 된다. 공정의 상태변화를 감시하기 위한 기존의 방법들은 공정 모형의 구조나 파라미터가 알려져 있거나 가정한 방법론을 제시하고 있다. 그러나 공정변화의 원인을 진단하거나 변동형태 또는 변동시점의 감지에 있어 통계적인 분포가 알려지지 않은 경우나 동적구조를 가진 데이터의 변동감지에는 많은 제약이 존재한다. 또한, 실제로 동적으로 변화하는 공정의 모형구조와 파라미터를 모든 경우에 파악하여 사전에 특정 시계열 모형으로 가정하기는 어렵다. 본 연구에서는 공정으로부터 얻어지는 데이터들을 뉴럴 모형화하여 이들의 이노베이션(innovation)에 대한 연속적인 검정을 통하여 공정의 상태변화를 감지하는 방법을 제시한다. 또한 새롭게 변화된 공정모형의 파라미터 집합에 대한 규명을 특정 시계열 모형을 가정하지 않은 일반화된 모형들에 대한 분류를 통하여 실시하였다.

키워드