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ABSTRACT

Given a tree T with a root node 0 having the capacity H and a profit ¢, and a demand d, on each node
v of T, the capacitated subtree of a tree problemi(C'STP) is to find a subiree of T containing the root that
has the maximum total profit, the sum of profits over the subtree. and also satisfies the constraint of which
the sum of demands over the subtree mmst be less than or equal to [I. We first define the so-called critical
item for CSTP and find an upper bound on the linear programming relaxation of CSTP. We then present
our branch and bound algorithm for solving CSTP and finally report the coniputational results on a set of
randomly generated test problems.

1 Introduction

Given an undirected tree T = (V, F) rooted at 0 € V', let ¢; and d; be the given profit and demand at
node i € V, respectively. Then, for a given capacity I/, the capacitated subtree of a tree problem(CSTP) is
to find a subtree T of T rooted at node 0 so as to maximize the sum of profits over the subtree 7 under the
constraint of which the total demand aover 7¥ does not exceed [1.

Clearly, CSTP is an NP-complete problem. since the 0-1 knapsack problem is a special case of CSTP
where the depth of the tree is one. CSTP can be served as a subproblem in the loeal access telecommunication
network(LATN) design problem (see Aghezzaf, Magnanti and Wolsey [1]. Balakrishnan ¢f af [2] and Shaw
[11]). Let the root of the tree be the location of a central office and the other nodes represent the potential
subscribers in LATN. Then, the central office communicates with other central offices through the backbone
network and the LATN contains a dedicated communication channel connecting each subseriber node to the
central office. Each subscriber node has a demand which represents the required number of circuits from
that node to the central office. This demand can be satisfied in either routing the cireuits to the central
office directly by using the dedicated cable or routing those ta a concentrator. an eclectronic device that
compresses incoming signals on mutiple lines into a single higher frequency sinal that requires one outgoing
line(see Balakrishnan et al [2]). Here, we assume the indivisiblc demand vequivement, that is, all circuits from
one subscriber node must have the same routing patiern. We also assume the contiguity restriction, that is,
if one subscriber node is served by a concentrator, then all subscribers on the path from that node to the
concentrator must be served by the same concentrator. Let cach concentrator have the given capacity. Then,
the objective of the LATN design problem is to select concentrator locations and to assign each subscriber
to one of the selected concentrators so as (o minimize the total cost, subject to the concentrator capacity
constraint. This problem can be solved hy solving i sequence of CSTPs(see Aghezzaf of al [1] and Shaw [11]).

Cho and Shaw [4] and Johnson and Niemi [6] proposed dynamic programming algorithms for solving
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CSTP in O(nH) and O(n(™*), respectively, where nis the mumber of nodes in the tree and € is the optimal
value. Consequently, CSTP can he solved by a dynamic programming algoritlon in O(n min(C*, H)).

In this paper, we develop a branch-and-bound algorithm for solving CSTP. The so-called critical-item
plays a central role in determining a bound during the process of our hranch-and-bound algorithm. For the
knapsack problem which is a special case of CSTP. the critical item ean be casily obtained through sorting in
O(nInn) time(see Horowitz and Sahni [5] and Martello and Toth [8, 9]). Moreover. by using a median -finding
procedure, the critical-item for the knapsack problem ean be found in O(n) time as in Balas and Zemel [3]
and Lawler [7]. However, defining the crifical itom for CSTP is not a trivial problem because of the contiguity
assumption.

One of the main contribution of this paper is to be able to suecessfully define the eritical item for the
CSTP and to find it in O(n?) time. Based on the procedure of finding the eritieal item. we develop a branch-
and-bound algorithm for CSTP. Our computational results indicate that onr branch-and-bound algorithm
performs much faster than CPLEX, the general integer programming solver.

This paper is organized as follows. We first formulate the capacitated subtree of a tree problem(C'STP)
in Section 2. Then, in Section 3, we discuss the uncapacitated subtree of a tree problem(USTDP). Section 4
defines the critical item for CSTP and also finds an upper bound on the optimal valne of CSTP. We present
our branch-and-bound algorithm for CSTP in Section 5. In Section 6. computational results are provided and
finally, Section 7 concludes the paper.

2 Problem Formulation

Let T = (V, E) be a given undirected tree rooted at node 0 . where V= {0,1.2,---,n}. We assume that
all nodes in T are labeled in the Breadth First Search{BFS) order. For each node 7 € V', ¢; is an integer
representing the potential profit at node i and d; is a non-negative integer representing the demand at node
i. Let p; denote the predecessor of node 7 and P[i. j] denote the unique path from node 7 to node j. Define

T(3) {Jjlj is a descendent of i}

{jli € P(0, j]}-

Then T'(i) is a complete subtree rooted at node i. Define a relation *<" as follows:

VIV =T = (V' E') is a subtree of T = (V. F) rooted at node 0.

Let H be the given capacity for a concentrator located at the root node. Then the capacitated subtree of
a tree problem(CSTP) is to find a subtree T = (V. I} of T rooted at node 0. where

V = arg ma g 1, <1y
arg,‘l’xlliv‘(j{Z(JZr < 1)

eV’  dev’
Let

= 1 if  Jis served
7710 otherwise.

Then, CSTP can be formulated as the following integer programming problem:

max Z(‘jl’j (2.1)
i=0

(CSTP) st. xp, >x;, j=12.---.n (2.2)
Sodjr; <l (2.3)
j=0
zj € {0,1}. (2.4)

Without loss of generality, we assume that

dj<H j=12-,n
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and
"

STdp> .

j=0
Otherwise, either the problem size can he reduced or the knapsack constraint (2.3} ean be eliminated. and
the problem is reduced to the uncapacitated subtree of a tree problem(USTP). In the next section, we will
present an algorithm for solving USTP in O(n) time.

3 Uncapacitated Subtree of A Tree Problem

The uncapacitated subtree of a tree problem(USTP) can be forundated as follows:

n
max E cjdy
ji=0

((ISTP) s.t. Tp, > i, J:: 1,2,---.n
x; € {0.1}.

We assumed that nodes in T are labeled in BFS order. Then. it can be easily seen that (I7STP) can be solved
by the following algorithm in O(n) time. Let o = (2:)ier. where T is a subiree of T

Algorithm 1.

begin
forallieV do
begin
set C; := ¢; xi=1;
end
fori:=ndownto0 do
begin
if (C; <0) then
zr@) = 0;
else
CP-‘ = CP-‘ + G
end if
end
end

Algorithm 1 is a bottom-up process, which follows the reverse of BFS order. Clearly, max(0. ) is the
optimal value of (UST P). Tt is also obvious that »; = 1 implies (; > 0, but the reverse is not true. Now, we
prove that the linear programming(LP) relaxation of (I7ST £) satisfies the integrality property.

Theorem 1. The linear programming relaxation of (USTP) has an integer optimal solution.

Proof: Given undirected tree T = (V, E), we define a direeted out-tree 7" = (V. 4), where A = {(p;,)}i #
0,i € V}. Let B be the arc-node incidence matrix of T. Then the constraint r, > r; can be written as
BTz < 0. Let (LP) denote the LP relaxation of (I7STP) and Z; p he the optimum value of (L P). Then, the
dual of (LP) is a minimum cost network flow problem and 7, p < Z};“ [e;]. Therefore, the system of linear
inequalities in (LP), BTz < 0, is Totally Dual Integral(TDI) (see Nemhauser and Wolsey [10] for details).
Since the right-hand side of BTz < 0 is integral (= 0), the polyhedron of the feasible solutions of (LP) has
integral extreme points. D

4 Critical Item and Upper Bound
In this section, we first define the critical item for CSTP. Let (5 = Zje'r(i)"J‘ D; = Z]-ET(,-)dj, and

r; = C;/D; (r; is called the critical ratio).
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Definition 1. Let i; be a node such that r;, = min{sr;{i € I\U‘L-I TN s = |n|u{l.|[)“—z:, y Dip < HY,
then i, is called the critical item for CSTP.

Now, we use the Lagrangian relaxation method to obtain an upper-bonnd on the optimal value of CSTP.
The Lagrangian relaxation of CSTP is as follows:

f(’\) = max Z((‘j - ;\(I, )J'I + AN
j=u
LR(}) st o, >a;. j=L2.-n
xr; € {0.1}..

Then, we have the following Lagrangian dual of CSTP.

%)= min f(A)
(LD) A>0.

For a given A, LR(}) is an USTP. Therefore, the LP relaxation of LR(N) has an integer optimal solution
by Theorem 1. Moreover, we have the following theorem.

Theorem 2. Let i, be the critical item for CSTP. Then
FON = (i) =(Co= 3 Ciy i (H = (Do = i)
t=t t=1

is the optimal value of both (LD) and LP releration of CSTP. Moreover. #* = (r7) dcfined by

{1 it j U=, T)
r. =

’ 0 if jelU-, Tun

H it jeT(i)
is the optimal solution of LP relaration of CSTP. where jp = I — (Dy — z, DD,
Proof : Let i, be the critical item for CSTP. Then, we have [ = (Iy —3;_, 1:,} > 0 and H — (Do —
’_1 y Di,) < 0. Since z;, >z} for all j = 1,2..--.n. »* = = (r7) defined above is a feasible solution of LP

relaxatlon of CSTP. We now prove that j(A‘) = 7( csrp. where Zogpp denotes the objective value of LP
relaxation of CSTP corresponding to z*

Yo G (Y G = (D= Z/),,)/n

e, Tun JET(L)

= (Co= Y Ci)+ o UF = (Do =3 Di)/Di)
t=1 1=t

Zestp

= (Cn— E (',',)-{-7’,'5(”—(1)(,— E Di:))
t=1 t=1
= f(A%).

But, by the integrality property of USTP, we have f(A*) = fiA*), where (A"} denotes the optimal value
of Lagrangian dual of LP relaxation of CSTP. Therefore. f(A*) is the optimal value of hoth (LD) and LP
relaxation of CSTP. Clearly, * = (}) defined above is the optimal solution of LP relaxation of CSTP. O

Corollary 1. Uy = |f(A*)] is an upper bound on the oplincal value of CSTP. where |a| denotes the largest
integer not greater than a.
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The following algorithm finds the eritical item (and thos finds U0) oo strongly polynouial time,
Algorithm 2.

begin
Apply Algorithm 1;
Qompute r; for all 7 with »r; = 1;
Do = Ltstes=n) 4

= )

while (Do > H) do

begin
k:=k+1;
1* := arg min{r;{z; = 1};
rr(e) = 0;
for (1 € P[¢*,0]\ {i*}) do
begin
C:i = C:i - —__l”
D; =L = Uy,
ri == Ci Dh
end
end
At =y Uy = [ FOO)];
end

Note that the output #* of Algorithm 2 is the critical item for CSTP. Agorithm 2 finds the critical item
#* in O(n?) time, since the while-loop in the algorithin can be repeated at most n + 1 times and also each
while-loop can delete at least one node and at most. n + 1 nodes. Clearly, Algorithm 2 can be interpreted as
a procedure of deleting subtrees rooted at nodes having the siallest eritical ratio until the remaining subtree
of T has the total demand that does not exceed H.

We call U; Dantzig upper bound and incorporate it to develop a branch-aud-hound algorithm for CSTP
in the next section.

5 A Branch-and-Bound Algorithm for CSTP

In this section, we develop a branch-and-bound algorithin for CSTP that utilizes the procedure of finding
the critical item. STACK is used to store all variables which have been fixed during the algorithm. We
put “i” into the STACK if z; = 1 and put “—¢ otherwise. A forward more consists of deleting a subtree
rooted at a node having the smallest critical ratio, which is done by the procedure delete(:). The procedure
find_critical_item which performs a sequence of forward move determines:

1) the critical-item
ii) a feasible solution which is used to update the incumbent solution.

After we have found the critical-item s, the root of the last deleted subtree, we branch on the node s by setting
z, = 1. Then, all nodes on path P[s,0] must be included (i.c.. set to 1), This is equivalent to compress nodes
in P[s,0] into a super root, which is done by the procedure compress(s). After the compression, we again
use the procedure find_critical_item to obtain a new upper-hound for the compressed tree. We continue
the above process until the current upper bound is less than or equal to the incunthent solution value (i.e.,
a fathoming condition is satisficd). Then, a backtracking more is performed. ‘The backivacking move consists
of adding subtrees deleted in the process of finding the latest eritical item by applying the procedure add(-).
Precisely speaking, suppose that we have just found a eritical itens and an npper-bound I7y which is less than
or equal to the incumbent solution value. Let ¢ he the last node in STACK being set to 1. Then we continue
adding subtrees deleted in the process of finding the critical item s until we meet " in the STACK. Then
we decompress node t by taking out ¢ from the compressed super root. It ix done by applying the procedure
decompress(t). We continue applying decompress(-) until we hit the last node k in the STACK being set
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to 0. Then we branch on the node & hy setting . = | (i.c. by applving compress(&)). If such a node & does
not exist, the algorithm is terminated.

As computing an upper-bound is relatively expensive (it requives Q0073 time), we store upper-hounds iuto
a stack, STACK_UB. Whenever we perform a compress(-), we put an upper bound into the STACK U B.
Whenever we perform a compress(-), we take out an upper-bound from the siack.

Algorithm 3.

begin
apply Algorithm 1,
incumbent_value := 0;
upper _bound := +oc;
s := find _critical item,;

stop :=0;
while (stop =0) do
begin
while (incumbent_value < upper bound) do
begin
compress(s);
s := find_critical item;
end

back tracking = 1,
next. back := 1;
while (back tracking = 1) and (STACK #0) do
begin
pick s from STACK;
if(s > 0) then
decompress(s);
nezxt back := 0;
if (STACK =0) then
stop :=1;
end if
else
8 1= —s;
add(s);
back tracking := next_back;
end if
end
end
end

Procedure find_critical_item

begin
s := arg min{r;|z; = 1};
C_check := Cy — Cy;
D_check := Dy — D,;
while (D_check > H) do
begin
delete (s);
s := arg min{r;|z; = 1};
C_check := Cy — Cs;
D_check := Dy — D,;
end
upper bound := |C_check + r.(H — D_cheek)];
if (C_check > incumbent_value) then
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incumbent _value := C_cheek;
end if
return s;
end

Procedure add(s)

begin
T7(s) = 1;
STACK := STACK \ {-s});
i:=s;
while (i #0) do
begin
1= pi
Ci :=Ci+Cs;
D; := D; + D,;
ri := Ci/Dy;
end
end

Procedure delete(s)

begin
rr@y = 0;
STACK := STACK [J{-s};
i:=s;
while (i £0) do
begin
1= pi;
Ci:=Ci - Cy;
D; := D; — Dy;
ri = Ci/Dy;
end
end

Procedure compress(s)

begin

STACK := STACK | J{s};

STACK.UB := STACK _UB{J{upper bound};

modify the data structure to compress node s to the root 0:
end

Procedure decompress(s)

begin

STACK := STACK \ {s};

STACK UB = STACK . B\ {uppcr bound}:

modify the data structure to decompress node s from the root 0:
end

Before we close this section, we discuss some implementation details (o improve the efficiency of the
computation. After a compression occurs, the total demands in the super root may exceed the capacity #. If
such a case happens, the following find_critical itemn procedure produces a trivial eritieal-item. i.e., i* = 0,
and a trivial incumbent solution value of 0. Therefore, it is better to eheck whether the compressed super
node would cause such a trivial case or not heforehand.
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Now, let
i) = min{rjlj € T() and »; = 1},

Then, it can be computed recursively by

Puin (i) = “'i“{"i~ min "nnn(j)}v
JESU

where S(i) represents the set of suceessors of node /.

Then, the smallest ratio over the tree can he easily obtained as r(0). Whenever a subtree 7'(0) is deleted,
we only need to update r,,;,,() along the path Pl.0] and all other nades are anehanged.

6 Computational Results

In this section, we report the computational results for our bhraneli-and bound algorithin for CSTP. The
algorithm was coded in C langunage and run on a SUN SPARC 1000 workstation. All the test problems are
randomly generated. To generate a tree randomly. we first specified n. the total number of nodes in the tree.
Starting from the root node, we randomly generated the mnuber of suceessors of cach node from an interval
[0,log, n] in BFS order until the total number of nodes was met. In our test problem set, the number of
nodes n was in the range [50,500] and two types of the capacity [, 5000 and 10000. were used. Depending
on the capacity H, the demand d; was randomly generated from the intervals of [1. 100] and [1, 1000]. Since
no other computational results for algorithins for solving CSTDP had ever been reported in the literature,
we just compared our B&B code with CPLEX. Table 1 presents the worst, the average, and the best CPU
time (measured in seconds) out of eight randomly generated test problems in each ease. It shows that our
algorithm is much superior to CPLEX.

n H B&B CPLEX

worst, | average | best worst [ average | best
50 [ 5,000 ]| 0.03 0.01 [ 0.01 0.05 0.3 0.02
10,000 0.03 0.01 | 0.01 0.05 0.04 { 0.03
100 [ 5,000 0.03 0.02 | 0.01 2.10 1.28 | 0.22
10,000 0.03 0.02 | 0.01 0.13 0.00 1 0.08
200 | 5,000 0.80 047 | 0.33 72.25 17.22 | 348
10,000 0.05 0.03 1 0.03 16.35 4.01 | 0.18
300 | 5,000 2.00 1331 1.01 69,43 INOT | 8.93
10,000 0.65 047 ] 0.38 | 12225 47.39 [ 6.00
500 | 5,000 6.35 527 | 1.63 61.22 20046 3.07
10,000 5.10 3.65 1 313 |1 207.65 2307 | 6.88

Table 1. Computational results for Comparing BB and CPLEX

7 Conclusions

In this paper, we have successfully defined the critical itenn for the capacitated subtree of a tree prob-
lem(CSTP) and have shown that an upper hound on the optimal value of CSTP can be obtained by incorporat-
ing the Lagrangian dual of CSTP in O(n?) time. Based on (his result. we have presented a branch-and-hound
procedure for CSTP and have also discussed some implementation details which are nseful for speeding up
the computational time. The computational results indicate that our algorithm performs much better than
CPLEX. However, there is still plenty of room for improving upper hounds on the optimal value of CSTP, so
that our branch-and-bound algorithin will have more efficient fathomming rules. Our future research will be
addressed to this interesting area.
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