Identification of the deletion endpoints in yeast
*Saccharomyces cerevisiae* mitochondrial oxi3 mutants

남수길1, 김북환2, 김상호1
1대구대학교 생물학과, 2한국방송통신대학교 보건위생학과

Previous studies (genetic mapping) in our laboratory showed that large deletions were exceptionally frequent in the *oxi3* gene, a large mosaic gene coding for subunit I of cytochrome oxidase. The nature of one of these large deletions was physically analyzed by PCR and sequencing. PCR were carried out on the whole mitochondrial genomes of several mutants isolated by CsCl density-gradient ultra-centrifugation. About 450 bp fragments which are presumed to contain deletion endpoints were successfully amplified and cloned in the pUC vector. DNA sequencing around these deletion endpoints were carried out and possible deletion mechanisms underlying these large deletions will be discussed.

Isolation and Genetic Characterization of Absolute Polyamine-Auxotrophic *Escherichia coli* K-12 Mutants

조난영1, 이상호
성균관대학교 이과대학 생물학과

In an attempt to elucidate the physiological function of polyamine in vivo, it was sought to isolate mutant strains showing absolute polyamine-requirement for the growth. Strain KL527 (*speAspeB*:*speC*) was mutagenized by Tn10 and λpIacMu53. The mutant pools were screened to find mutant strains showing absolute polyamine-dependent growth (*Spe−*). Two representative mutant strains, JL183(*speY; zzz::Tn10*) and JH6044(*speZ::λpIacMu53*), were found to be *Spe−*. They both showed no growth in the absence of added polyamine in glucose minimal medium, but restored their growth by addition of spermidine or putrescine in the medium. The strain JL183 isolated by Tn10 mutagenesis was found to have no linkage between *Spe−* phenotype and Tn10(Tc5). Therefore, it is likely that this strain acquired *speY* mutation spontaneously. The *speY* locus was genetically mapped to locate between 90.75 min and 91.5 min in the *E. coli* chromosome. The *speY* mutation was transduced in KL527 using the *malE::Tn10kan* as a nearby positive selection marker. All of the *speY* transductants showed *Spe−* phenotype like JL183. Therefore, it is concluded that the *speY* mutation in the *λspeAspeB::*speC* background gives strong *Spe−* phenotype. The other *Spe−* mutant JH6044 showed 100% linkage between λpIacMu53(Km2) and *Spe−* phenotype. Although the genetic map location of the *speZ::λpIacMu53* was not determined, it was not co-transducible with the *malE::Tn10kan* nearby the *speY* gene. Therefore, it is unlikely that *speY* and *speZ* mutations locate in the same gene.