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Effects of a Submerged Block on the Sloshing of a Fluid
in Rectangular Tanks
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1 INTRODUCTION

A sloshing behavior is of important concern in the design of the liquid containers with internal bodies and
the submerged components. Specially, the sloshing is more important problem to analyze the stability of
freestanding submerged bodies.

Sloshing behavior of liquid in containers has been investigated by analytical and experimental method.
Hunt and Priestley[1], Liu[2], Utsumi, et.al.[3], Haroun and Bashardoust[4], and Haroun and Chen(5]
developed equations for the behavior of the surface water wave of rectangular tanks. Their studies,
however, are limited to the containers without internal bodies. In general, since sloshing frequencies
are decreased in case of containers with internal bodies[6], the results of those studies could be no more
applicable to solve the sloshing problems of containers with internal bodies.

There are a few studies on the sloshing behavior of the liquid of containers with a submerged body.
Evans and Mclver[7] investigated the effects of a thin vertical baflle on the resonant frequencies of a fluid
within a rectangular container using the linearized theory of water waves. They obtained an integral
equation for the unknown velocity across the gap, which was not covered by the baffle in the fluid, by
matching eigenfunction expansions across the gap. The thickness of the baffle was neglected in their study.
Watson and Evans[8] studied the resonant frequencies of oscillation of a fluid in a rectangular container
that contained either a partly immersed rectangular surface block or a totally immersed bottom-mounted
rectangular block, which was symmetrically placed on the bottom of the tank. By considering symmet-
ric and antisymmetric potentials separately, they constructed eigenfunction expansions appropriate to
two distinct fluid regions that could be matched across their common vertical boundary. The matched
eigenfunction expansions and Galerkin expansions were used to find out the resonant frequencies.

The purpose of present study is to find out the resonant frequencies and mode shapes of a fluid in
rectangular containers with a totally submerged and unsymmetrically placed rectangular block, and to
investigate the effects of the height, width, and position of the block on the resonant frequencies and
mode shapes through some numerical computations. Fluid is divided into three regions and the velocity
potentials, which satisfy Laplace equation and boundary conditions in each region, are introduced. By
finding complex constants satisfying the continuity conditions of the mass flux and energy flux at the
common vertical boundaries between fluid and block, the resonant frequencies and mode shapes are found.
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2 RESONANT FREQUENCIES

A rectangular rigid tank with an unsymmetrically placed rectangular block is considered. Figure 1 shows
the geometry and the coordinate system of the tank.

With the assumption of irrotational motion and an incompressible and inviscid fluid, there exists a
velocity potential

®(z, z,t) = ¢(z, z)etw! (1)
where the time-independent potential, ¢(z, z), satisfies the Laplace equation in the fluid region.
Vig(z,2) =0 (2)

From figure 1, the velocity potential should satisfy following boundary conditions:

~b<z < —a, z=10
¢.=0. —-a<z<a, z=h (3)

a<z<ec, z=0

w?

¢,z:?¢, —-b<z<e, z=d (4)

_ z = -b, 0<z<d
¢z =0. {z:c, 0<z<d ®)
=0 |z} = a, 0<z<h (6)

Let fluid region divide into three parts shown in figure 1 and the velocity potentials of the regions
I, 1T and III be ¢, ¢2 and ¢3, respectively, then the general solutions satisfying (2), (3) and (4) can be
expressed as

¢1(£, z) = i [{Aje—ikjbe—iij + (TS)Aje—ikjb + t(l";)Bje—ik,‘c) eika} flj(z)
i=1

00
+ 30 (") aze st 4 1§)Bjekie) bt £y ()
m=2
(-b<z< —a) (M)
da(z,2) = Z {(Cyjsinkjz + Dyj cosk;jz) g15(2)
ji=1
o0
+ Z (Cnjsinhkj,;z + Dpj cosh k},;z) gnj(2) }
n=2
(ra<z<a) ®)
oo
¢3(z, z) = Z [{B] e—ikjceiij + (rgg)Bje—ikjc + t(l‘li)Aje_ikjb) e—ik,—z} .flj(z)
j=t1
— 3 i 1 :
+ 3 (A Byemitsm 4 t0)yem ) ebm £ (2)]
m=2
(a<z<o) 9)
where
[d sinh 2k;d\] "%
fi;(2) = |2 (1+ ——]—)] cosh k;z
7 2 2k;d ’
[d sin 2km;d\] ¥
fmJ(Z) = .§ (1 + W cos k'mJZ
_ _1
d sinh 2k} d’ :
g1;(2) = 5 (1 4 e — k’d’ >] cosh k(2 — k)
[ sin 2ky, ;d’ 3
gﬂj(z) = E <1+ 2]&7/ d/ )] COSli(z )
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and

€

~ = ktanhkd = —km tank,,d (m=23,4,..)

I

k' tanh k'd’ = —k}, tan k;,d’ (n=2,3,4,....).

Here A;, B, C1j,Cnj, D1j and D,,; are complex constants, 7(') and #(3) are the reflection coefficients for

waves upon the block from region 1 and III, respectively, () and ¢®) are the transmission coefficients.
{fmj} and {gn;} are orthonormal sets over the mterval (0 < z < d) and (h < z < d). These equations
show that the velocity potentials consist of the coming wave from the wall, reflecied wave from the block,
transmitted wave from other fluid region, and scattered waves by the block.

Substituting (7) and (9) in (5) and using the orthonormal conditions, a general expression for the
determination of the resonant wave numbers, £;, in a rectangular tank with any internal body can be

obtained by
3 ik 1 ik 3
tg;)t(lj) = <62 kit ng)) (eZzlc,c T&j)) ' (10)

This resonant condition agrees with the result from the wide-spacing approximation[9]. Because r&}) and

1) are identical to r> and £ for a symmetric block, respectively, (10) can be reduced as
17 1 1j
8 = ("' — ry) (¥*i° —ry) (11)

where

(1) _ (3 =

rlj = T'lj =Ty
1) _ L3
Having required wave numbers k; from (11), the resonant frequencies can be calculated by the relation

w; = \/k; tanb kd. (12)

3 MODE SHAPES

It is convenient to split velocity potentials by the direction of the coming waves from the wall for the
determination of mode shapes, reflection and transmission coefficients. The j-th velocity potentials can
be expressed as

¢15(z,2) = d115(x, 2) + d135(z, 2) (13)
$25(2,2) = dj(x, 2) + P23j(z, 2) (14)
B3;(2,2) = Pz, 2) + dasi (2, 2) (15)
in which
. . . °
$115(z, 2) = AjeTs? {(e_'k” +17€%5%) f1j(2) + D i€t g (Z)} (16)
m=2
$13j(z, 2) = Bje~*i* (tj e*Tfi(z)+ Y tmjek“f”fmj(Z)) (17)
m=2
da1i(z, 2) = (Cl(;)sin kiz+ DS.) cos k; z) 91;(2)
o0
+ Z (C,(l;) sinh ky;z + D,(Ilj) cosh kﬁ,]:c) 91 (2) (18)
n=2
Ba3j(z, z) = (CS) sin kjz + DS) cos k;x) g15(2)
+ Z (C,(j-) sinh ky ;¢ + DS;) cosh k;j:c) gnj(2) (19)
n=2
$a15(x, z) = Aje~ st (tje_ikf’flj(2)+ > tmje_k"‘”’fmj(z)) (20)
m=2

@azj(z, z) = Bje_ikjc

——

o
(™% 4 rie™™®) fis(2) + Y ije"k""'”fmj(z)} (21)
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The reflection and transmission coefficients and mode shapes can be obtained by the velocity potentials
satisfying boundary condition (6) and following continuity conditions over the interval (h < z < d):

b1 = ¢24, b15.0 = b2je (z = —a)

22
$3; = ¢aj, $3j,c = b2j.0 (z =a). (22)
Substituting velocity potentials (16), (18) and (20) in (6) and (22), following equations are derived
. k! k!
Aj(1- X‘fj)e_'k’b° = 2ik_1- (C(l) cos kiaW1y; + ZC,(,;) k’:’ cosh k;, a\Ill,.]) (23)
7 n=2
Aj %xﬁje"k o = 2 k (C(l) cos k' ¥y + EC,(,? Ic’ cosh k, aW,,,_,)
] n=2
(r=2,3,4,..) (24)
. K’ had k!
Ai(1- Xij)e"kfb" = 2i# (Dﬁ-) sinkja¥y1; — Z Df,lj)ﬁsinh k::j“‘l’lnj) (25)
7 n=2 j
ks . K; .
A;j «éj—xﬁje""ﬂ’" = 2k—; (DS-) sin kjaW,y; — ZD,(,IJ) k"," sinh k, a\Ilm,)
n=2
(r=23,4,..) (26)
e —ikjbo
e = ek {(1 +x3;) Y1 + 2 xm]wml,} Aj (27)
m=2
cW e i (1+x%) ¥ +i 8 Wi bA (n=2,34,..) (28)
nj —_m +X1j inj m=2ij mnj 7 n=2s9414...
() _ eikibe , =N ,
"D = Seoska (L4 x35) W11 + D Xonj Ut ¢ A (29)
J m=2
oy _ et ; s =2,3,4 3
DY = g (L4 x15) Frnj + Y Xins Umnj ¢ 45 (n=2,3,4,..) (30)
ny m=2
where
bp = b—a, )
Xllzj = (rj __tj)e—%k‘:;a’ Xl] - (TJ +t])e_2‘k’: k
X?] = (T',-J _t”)e—(zk +krj)a Xr] - (rr] +tr )G 3k + ”)a
Xmj = (rmj — tmj)e” (ik; +km,)a Xij = (Pmj + tmj )e-(-k j+kmj)a
and

d

Uy = /,; J1;(2)g15(2)dz
d

Umij = /h fmi(2)g15(2)dz
d

Vi, = /;. F15(2)gn; (2)dz
d

Wrnoj = [ s 2 ().

By substituting (27) and (28) in (23) and (24), the coefficients for an antisymmetric potential, {x5,;},
can be given by
Xy = UZ Ve (31)
where
Asj =< x§; X3 X5 - Xmj >T
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. . 4 -
(ufy; - 1) ufy; tufs; iU

a a a a
Ug; (ugy; +1) U3; e Unpmj
a a a a
U, = Ugy; Ugy; (ufg; +1) .. U
a a a a
U Upnoj Umaj oo (upmy +1)
J— S0 B .G 0 0 T
V=< —(1+ zullj) ugy; uSy; e —ULy >
in which
@ g cot K4S Mg, coth B,
Upprj = T mlj¥r1j CO ja+ T ¥mnj¥rnj co nja-
mj st fmj

Similarly, substituting (29) and (30) in (25) and (26), the coefficients for a symmetric potential, {x;,;},
can be given by

~U-l.V..
X5 =U} -V, (32)
where
X.: =< X“ X5 Xs' XS' >T
8] 15 23 3 - mj
saS N | 1asS .
(tufy; +1) iuiy; i ... Ui
8 s 3 s
Ua1j (“22j -1) Uagz; v Ugmj
3 $ 3 s
U,; = Uz j Uza; (“33]' - ... Uamj
s 3 3 8
Ui Unnaj Unzi oo (Upmi — 1)
L — B | 3 —nS . T
Vsi=< (T—tufy;) —udy; —udy; -0 —upgy >
in which
kl oo /I
S o= —LW 0, tank) % §yni Urnj tanh k!
YUpp; = k_‘ mlj¥r1j vank;a — r mnj ¥rpj tANNK, Q.
mj n=g "™

Therefore j-th reflection and transmission coefficients, r; and t;, can be determined by

1 ks

ri = 50+ xi;)e¥H* (33)
1 s ik;a

t; = '2‘(X‘1'j - le)ez kie, (34)

Complex constants CS), Cr(lsj) , Dg), and DS;) can be given by substituting velocity potentials (17),
(19) and (21) in (6) and (22) as follows:

—ikjec i
(3 _ € 7%e a X a . R
) = | (a0 oot v} -
~ikje i
@ . ¢ 7" a i+ > xe 4B,
Cnj' = m‘m{(”"”)W“’+m=2""‘"q'"‘"’}B’ 0
@ _ etk fol
_ s . $ . .
D5 = Gaeiza | (HX0s) ¥+ 2, Xong ¥t B o
—ik e i
® _ _ee 3 Xoni Urmn
Dy = Em{u”i") %"”m:ax””’w"’"’}Bj )

where ¢, = ¢ — a.

Therefore the j-th mode shape, ¢O~Sz, z), can be obtained from (13)-(21) as the sum of the components
for a tank without a block and for a block, i.e.,

- tmi [ ik,
$0i(2,2) = 2osk; (o + b)fyj () + e~ 3 {’"W’ o (- n)} "7 fing ()
J

m=2
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(b <2< —a) (39)

1.
doj(x,2) = §e"kf(b_“) {(C{j sin k';:c + D'lj cos Ic;ac) 915(2)

oo
+ Z (Chjsinh k),;z + D}y ; cosh ky,;z) gnj(2)}
n=2

(~a<z<a) (40)

boj(z,2) = %e"ki(b"c)(e2ikfb —r;) [2 cos kj(z — ¢) f1;(2)
3]

o
‘L tm; ik ks
+e—-xk_.,cm§_2: {T'mj + ZJ (eZUc,c _ Tj)} e km”fmj(z)jl

(a<z<c) (41)

where

1 1, o, -
ij S {l— E (e2|k]b —'T'j)} {(1+X?j) \1’11]' + ngnqumlj}

" sin kia =
Dj; = coslk;.a {1 + % (ks rj)} {(1 +x§;) Y + ”éx:,,jwmu}
Crj = —m {1 _ % (e2kst — r,-)} {(1 +x$;) Yinj + ;anj\llmnj}
ni = m {1 + % (e¥F® — "j)} {(1 +X1;) Yinj +§;an]’\1’mm‘}

4 NUMERICAL EXAMPLES

It is known that the resonant frequencies and mode shapes of a fluid in a tank with a block are varied by
the height, width and position of the block as discussed in the previous sections. This study investigates
how the resonant frequencies and mode shapes vary with the variation of the dimensions and position of
the submerged block through some numerical examples.

Effects of height

The resonant frequencies can be affected by the geometry of a tank and the height of an internal block
as shown in figure 2. The resonant frequencies are decreased as the height of a block is increased. The
decrease rate for a broad tank is larger than for a tall tank. First resonant frequency for the broad tank
is much sensitive to the height of the block, but there is little change in the higher resonant frequencies
for h/d < 0.6. For h/d > 0.9, the resonant frequencies are much rapidly decreased in both tanks. It
can be seen that the resonant frequencies are not influenced by the internal body for the tall tanks up
to h/d < 0.8. The mode shapes of free vibration of free-surface are shown in figure 4. Generally, large
h/d decreases the amplitude of mode shapes, but the changes of the mode shapes are small in case of
h/d < 0.5. When a block is mounted on the center of the bottom, the maximum amplitude of the second
mode is developed at the central antinode. If a wide block is placed on the center, the block does not
influence in the mode shapes.

Effects of position
Figure 3 shows that resonant frequencies are decreased as b/l approaches to 0.5. In general, there are
little changes on the resonant frequencies by the position of the block. Figure 4 shows that small 4/!
makes great change in the mode shapes and for large 2a/1, the effect of 4/ ratio is decreased. For small
b/l less than 0.3, the position does not affect on the mode shapes.

Effects of width
Figure 3 and 4 show that the resonant frequencies are greatly decreased and there are little changes in
the mode shapes. For h/d < 0.5, the effect of the block can be neglected in the higher than third mode.
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5 CONCLUSIONS

The effects of a submerged block on the resonant frequencies and mode shapes for the rectangular liquid
containers are investigated. It is known from the results that the resonant frequencies depend upon the
height and width of a block and mode shapes depend upon the height and position.

When a block is higher and wider, the resonant frequencies are smaller. Moving the block to the
center decreases the resonant frequencies. When the height of a block is larger than 80 percent of the
height of liquid, the resonant frequencies are rapidly decreased. If a block is placed near the center, there
is little change in the resonant frequencies.

When a block is lower and wider, the variation of mode shapes is smaller. Moving the block to
the center makes little change in the mode shapes. The width of a block greatly affects in resonant
frequencies, but little influences in mode shapes.
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Figure 1: Tank with a submerged block
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{d) Fourth Mode

{¢) Third Mode

Mode shapes for fluid tanks with a submerged block {continued)
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