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ABSTRACT For evaluating the response fluctuation of the actual environmental acoustic system excited
by arbitrary random inputs, it is important to predict a whole probability distribution form closely
connected with evaluation indexes L, L_ and so on. In this paper, a new type evaluation method is
proposed by introducing three functional models matched to the prediction of the response probability
distribution from a problem-oriented viewpoint. Because of the positive variable of the sound intensity,
the response probability density function can be reasonably expressed theoretically by a statustical Laguerre
expansion senes form. The relationship between input and output is described by the regression relationship
between the distribution parameters (containing expansion coefficients of this expression) and the stochastic
iput. These regression functions are expressed in terms of the orthogonal serics expansion and their
parameters are determined based on the least-squares error criterion and the measure of statistical
independency.

1. INTRODUCTION

For the evalvation of the actual environmental acoustic system, there are many kinds of evaluaton
indexes such as L, L and so on. As is well known, these are closely related to the whole probability
distribution form. We have already proposed some methods to predict the probability distribution form
of the response fluctuation of the acoustic system with arbitrary random inputs. In this paper, a new
type evaluation method is proposed by introducing three functional models matched to the prediction of
the response probability distribution from a problem-oriented viewpoint. Since originally the sound
intensity fluctuates only within a positive amplitude region, the probability distribution of the output
sound intensity can be reasonably expressed in a form of statistical [.aguerre series expansion. Here, as
the factor reflecting functionally the stochastic relationship between input and output for the acoustic
system, the regression relationship between the distribution parameters including the coefficients of the
expansion form can be taken. However, there remains the problem on how to identify the regressions
coefficients by use of the measurements of the observation as the problem to be solved. These regression
functions are expressed generally in terms of the orthogonal series expansions for the probability
distribution of only input or the joint probability distribution of input and output. The distribution
parameters of the above fimctional model are determined hased on the least-squares error criterion and
the measure of statistical independency. :

2. THEORETICAL CONSIDERATION

2.1 Three functional modets of acoustic system contaminated by background noise

For the acoustic environment system, let us consider concretely the probiem evaluating the probability
distnbution of the output sound intensity responding to a stochastic input sound intensity fluctuating in

the non-Gaussian probability distnibution form, after defining X as the sound intensity of the input, y as
the sound intensity of the output, z as the sound intensity of the observation and v as the sound intensity
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of the background noise. In consideration of this problem, it is naturally assumed that the background
noise v and the cutput y are independent each other( of course, x and v are oniginally independent each
other). The probability density function (abbreviation, p. d. f.) p(y) of output y, fluctuating only in the
positive values region can be reasonably expressed in the following statistical type Laguetre series
expansion form:
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where I"(m) denotes a gamma function and < > denotes the expectation of y. In addition, p{Tm.s) and
Ln(“)(x) denote respectively a gamma p.d.f. and an associated Laguerre polynomial, defined as follows:
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Two parameters m, , s and every expansion coefficient A depend on the fluctuation of ionput x and
the stochastic relatonship between input x and output y. From the problem-onented viewpoint to predict
the p.d. f. of the output y, it is desirable that the relationship should be described functionally in terms of
the regressions styles: <ytx>,{ (y—{y))z |x' and (11('"’_“()&/%)])() rather than in terms of only the
physical rule of correspondence between x and y. Here, < - | x> denotes the conditional expectation

conditioned by x directly connected with regression analysis. These regressions functions are defined as
follows:
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where p(yix) is the conditional p.d. f. of y condiioned by x. Since these regressions are obviously
ponlinear, for the purpose of getting one of general representations, let us use the method of orthogonal
series expansion, by letting p(x) and p(x.y) denote the p. d. f. of x and the joint p.d. f. of x andy.
After expanding p(x) and p(x,y) into the orthonormal ecxpansion series forms with weighting functions
pr(xm, s ) and p(x;m s)p(yan s }as basic p.d.f, respectively and using the definition of the conditional
probability p(ylx)=p(x,y)p(x), p(yIx) can be expressed as follows:
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Here, ¢, (x) and ¢, ?(y) are the orthonormal polynomials that satisfy the following relationships:
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where 3_ denotes Kronecker's delta. Upon expanding y and (y - <y>)® into the orthogonal series
expansion forms as follows:
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the above regression functions can be respectively expressed as follows:
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after substimting Egs. (5) and (9) into Eq. {4) and vsing Eq. (8). Since the observed quantity is not y
but z, it is necessary to find how to identify thc above rcgression paramcters in Eq. (10) by use of
observed 7z values. On the basis of the additvity of sound intensity quantity and the addition theorem
for the associated 1.agnerre polynomial, the following relationships can be found :
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By replacing ¥, (y- <y»), {y - <y>)’ and LI (yrs,) by <sbofy-(ydix), { ({91 |} and
(I.,k(m"_l)(y/sy) |x) . the following three functional models for the resultant observation z are introduced
corresponding to Fiqs. (12}, (13) and (14}
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2.2 Identification of functional models and prediction of the response probability distribution

Since <y>={{yk)} and ((y—(y!)z'=(( (Y‘()’Dz IK” can be evalvated once after (yk} and
((y— (y})2 Ix’ are determined, two distribution parameters m, and s, can be estimated from Eq. (2).
Accordingly, first let us determine {yk} and {(y-{y))*|x}. By replacing infinity by finite number M
1n the {irst equation of Eq. (10), its model error ¢ is defined as follows:
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The unknown parameters B, 's (k=0,1,..,M) are determined by the well-known least-squares error
cntenion . That s, these parameters are chosen to minimize the expectation of ¢
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where <> . or<> _ denote expectations about x, z and v, or about x and z, respectively. Upon

equating to zero the first derivatives a( 82)/0B'k (k=0,1,..., M), the following simultaneous equations
are obtained:
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Similarly, minimizing the expectation of squares of the model error for the first equation of Eq. (10) to
determine B" 's (k=0, 1...., M) yields
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Next, let us estimate the coefficients A's

()

can be evaluated once after ( Lk(my_n(y/sy) Ix) (k=1,2,...) are determined, the coefficient A_(n=1, 2....)
can be estimated from Eq. (2). Hence, the problem is reduced to the estimation of the parameters D__
i Eq. (10). Here, to estimate D_, the least-squares error criterion and the measure of statistical
independency between the input x and the observation z are emploved. First, in the similar way as stated
above, the least-squares error criterion leads to
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Next, let us introduce the evaluation criterion based on the measure of statistical independency . The
joint pd. f. of x and v, the marginal p.df. of x and the marginal p.d.(. of v are denoted by p(x,v), p(x)
and p(v), respecuvely. Then, by assuming that p(v) 1s expressed by the gamma distnbution p(v;m s )
and expanding p(x.v) into the orthonormal series expansion with a weighting function p(x)p{v;m,s ),
p{x.v} is furst expressed as follows:

[ Tan)il - -
PEVIPIP(va, 5,) 2 2‘. 2 : K60 F&% L™ ”(Sl). (24)

where 6,""'s are an orthonormal polynomial such that
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and arc determined by employing Schmid(’s orthogonalization technique and K,'s are defined by
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As is well known, if x and v are independent, then p(x,v) = p(x) p(v). Hence, by comparing this with
Eq.(24), the coefficients K, except for 1=0 and j=0 must satisfy K, =0. That is, this leads to

(ei‘”(x) Lj(’““_”(é)) =0 . @7

By using Eq. (17) and the definition formula of I.aguerre polynonual
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After all, by using Eq. (1) with estimated values of m,s_and A , the p.d{ of y can be predicted.
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3. EXPERIMENTAL CONSIDERATION

By using the proposed method, the sound msulation system was identified and the p.d.f. of the response
sound fluctuation without a background noise was predicted. In the experiment, when the road traffic
noise was excited, the input and output were sampled every one second by using a sound level meter.
After measurement, to confirm the effectiveness of the proposed method, the white noise generated by a

noise generator was added as the background noise. In Fig. 1, the result for the case of M=2 is shown.
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Fig.1 A comparison between the theoretically predicted cumulative probability distributions and
experimentally sampled values for a sound-bridge insulation system.

4. CONCL.USION

To predict the probability distribution of the response fluctuation of the environmental acoustic system
with an arbitrary sound input under the existence of the background noise, a new method has been
proposed by introducing three functional models in the sound intensity scale. The response probability
distribution has been expressed in a statistical Laguerre expansion. Then, the relatonship of input and
output has been described by the regression of the moments directly connected to this expansion form.
After the regression has been related with observation through the functional models and has been
expressed in terms of the orthogonal series expansion, the parameters of the regressions have been
estimated based on the least-squares error criterion and the measure of statistical independency. Finally,
the proposed method has been experimentally confirmed by applying it to an actual acoustic system.
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